Skip to main content

Advertisement

Log in

Failure after osteosynthesis of trochanteric fractures. Where is the limit of osteoporosis?

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The aim of this study is to identify osteoporosis values, beyond which there is a high risk of osteosynthesis failure. Bone mineral density (BMD) of 30 cadaveric femora with a pertrochanteric fracture osteotomy was correlated to the risk of cut out after osteosynthesis on a biomechanical testing approach. For a BMD less than 250 mg/cm3, there is a high risk of fixation failure after surgical treatment of pertrochanteric fractures. This value can be regarded as a reference value for future experimental and clinical studies.

Introduction

Despite continuous modification of intramedullary load carriers for the surgical stabilization of trochanteric fractures, cut out remains the most frequent complication. The aim of this experimental study was to identify threshold osteoporosis values, beyond which there is a high risk of osteosynthesis failure.

Methods

Bone mineral density (BMD) of 30 cadaveric femora was recorded for the femoral head by QCT measurement. Subsequently, a standardized osteotomy mimicking an unstable trochanteric type fracture was stabilized by intramedullary nailing. The constructs were loaded axially at a force of 2,100 N up to 20,000 cycles. Cut out at the femoral head was documented by radiograph. Statistical evaluation of the cohort group was performed by calculation of relative risk in relation to the BMD values.

Results

In total, there were six cases of cut out after 10,000 cycles. The incidence of cut out for BMD less than 250 mg/cm3 was 0.55 (5 of 9) and for BMD greater than 250 mg/cm3, it was 0.05 (1 of 21). Therefore, the relative risk of cut out for BMD <250 mg/cm3 is 11× greater than for a BMD >250 mg/cm3. After 20,000 cycles, an additional test caused one cut out (relative risk of cut out for a BMD <250 mg/cm3 5.8).

Conclusions

For a BMD less than 250 mg/cm3, there is a high risk of fixation failure after surgical treatment of pertrochanteric fractures. Although this value is based on an experimental in vitro study design with all its associated limitations, it can be regarded as a reference value for future experimental and clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bonnaire F, Zenker H, Lill C, Weber AT, Linke B (2005) Treatment strategies for proximal femur fractures in osteoporotic patients. Osteoporos Int 16(2):S93–S102

    Article  PubMed  Google Scholar 

  2. Parker MJ, Handoll HH (2010) Gamma and other cephalocondylic intramedullary nails versus extramedullary implants for extracapsular hip fractures in adults. Cochrane Database Syst Rev (9):CD000093

  3. Bonnaire F, Weber A, Bosl O, Eckhardt C, Schwieger K, Linke B (2007) "Cutting out" in pertrochanteric fractures—problem of osteoporosis? Unfallchirurg 110(5):425–432

    Article  PubMed  CAS  Google Scholar 

  4. Windolf M, Braunstein V, Dutoit C, Schwieger K (2009) Is a helical-shaped implant a superior alternative to the dynamic hip screw for unstable femoral neck fractures? A biomechanical investigation. Clin Biomech 24(1):59–64

    Article  Google Scholar 

  5. Goldhahn J, Seebeck J, Frei R, Frenz B, Antoniadis I, Schneider E (2005) New implant designs for fracture fixation in osteoporotic bone. Osteoporos Int 16(2):S112–S119

    Article  PubMed  Google Scholar 

  6. Bonnaire FA, Buitrago-Tellez C, Schmal H, Gotze B, Weber AT (2002) Correlation of bone density and geometric parameters to the mechanical strength of the femoral neck. Injury 33(3):C47–C53

    Article  PubMed  Google Scholar 

  7. von der Linden P, Gisep A, Boner V, Windolf M, Appelt A, Suhm N (2006) Biomechanical evaluation of a new augmentation method for enhanced screw fixation in osteoporotic proximal femoral fractures. J Orthop Res 24(12):2230–2237

    Article  PubMed  Google Scholar 

  8. Dall'Oca C, Maluta T, Moscolo A, Lavini F, Bartolozzi P (2010) Cement augmentation of intertrochanteric fractures stabilized with intramedullary nailing. Injury 41(11):1150–1155

    Article  PubMed  Google Scholar 

  9. Konstantinidis L, Papaioannou C, Mehlhorn A, Hirschmuller A, Sudkamp NP, Helwig P (2011) Salvage procedures for trochanteric femoral fractures after internal fixation failure: biomechanical comparison of a plate fixator and the dynamic condylar screw. Proc IME H, J Eng Med 225(7):710–717

    Article  CAS  Google Scholar 

  10. Mehlhorn AT, Strohm PC, Muller CA, Konstantinidis L, Schmal H, Sudkamp NP (2009) The reversed locked internal plate fixator as an alternative internal fixation of problematic proximal femur fractures. Z Orthop Unfall 147(5):561–566

    Article  PubMed  CAS  Google Scholar 

  11. Muller ME (1980) Classification and international AO-documentation of femur fractures. Unfallheilkunde 83(5):251–259

    PubMed  CAS  Google Scholar 

  12. Wu CC, Shih CH, Lee MY, Tai CL (1996) Biomechanical analysis of location of lag screw of a dynamic hip screw in treatment of unstable intertrochanteric fracture. J Trauma 41(4):699–702

    Article  PubMed  CAS  Google Scholar 

  13. Konstantinidis L, Hauschild O, Beckmann NA, Hirschmuller A, Sudkamp NP, Helwig P (2010) Treatment of periprosthetic femoral fractures with two different minimal invasive angle-stable plates: biomechanical comparison studies on cadaveric bones. Injury 41(12):1256–1261

    Article  PubMed  CAS  Google Scholar 

  14. Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda GN (2001) Hip contact forces and gait patterns from routine activities. J Biomech 34(7):859–871

    Article  PubMed  CAS  Google Scholar 

  15. Roderer G, Moll S, Gebhard F, Claes L, Krischak G (2011) Side plate fixation vs. intramedullary nailing in an unstable medial femoral neck fracture model: a comparative biomechanical study. Clin Biomech 26(2):141–146

    Article  CAS  Google Scholar 

  16. Sermon A, Boner V, Boger A, Schwieger K, Boonen S, Broos PL, Richards RG, Windolf M (2011) Potential of Polymethylmethacrylate Cement-Augmented Helical Proximal Femoral Nail Antirotation Blades to Improve Implant Stability-A Biomechanical Investigation in Human Cadaveric Femoral Heads. The Journal of trauma

  17. Barton TM, Gleeson R, Topliss C, Greenwood R, Harries WJ, Chesser TJ (2010) A comparison of the long gamma nail with the sliding hip screw for the treatment of AO/OTA 31-A2 fractures of the proximal part of the femur: a prospective randomized trial. J Bone Joint Surg Am 92(4):792–798

    Article  PubMed  Google Scholar 

  18. Sadowski C, Lubbeke A, Saudan M, Riand N, Stern R, Hoffmeyer P (2002) Treatment of reverse oblique and transverse intertrochanteric fractures with use of an intramedullary nail or a 95° screw-plate: a prospective, randomized study. J Bone Joint Surg Am 84-A(3):372–381

    PubMed  Google Scholar 

  19. Lobo-Escolar A, Joven E, Iglesias D, Herrera A (2010) Predictive factors for cutting-out in femoral intramedullary nailing. Injury 41(12):1312–1316

    Article  PubMed  Google Scholar 

  20. Akan K, Cift H, Ozkan K, Eceviz E, Tasyikan L, Eren A (2011) Effect of osteoporosis on clinical outcomes in intertrochanteric hip fractures treated with a proximal femoral nail. J Int Med Res 39(3):857–865

    Article  PubMed  CAS  Google Scholar 

  21. Knobe M, Munker R, Schmidt-Rohlfing B, Sellei RM, Schubert H, Erli HJ (2008) Surgical outcome in pertrochanteric femur fracture: the impact of osteoporosis. Comparison between DHS and percutaneous compression plate. Z Orthop Unfall 146(1):44–51

    Article  PubMed  CAS  Google Scholar 

  22. Hauschild O, Ghanem N, Oberst M, Baumann T, Kreuz PC, Langer M, Suedkamp NP, Niemeyer P (2009) Evaluation of Singh index for assessment of osteoporosis using digital radiography. Eur J Radiol 71(1):152–158

    Article  PubMed  CAS  Google Scholar 

  23. Konstantinidis L, Papaioannou C, Hirschmüller A, Pavlidis T, Schröter S, Südkamp NP, Helwig P (2012) Effects of muscle-equivalent forces on the biomechanical behavior of proximal femur fracture models: a pilot study on artificial bones. Proceedings of the institution of mechanical engineers part H. J Eng Med 226(9):681–685

    Article  Google Scholar 

  24. Sommers MB, Roth C, Hall H, Kam BC, Ehmke LW, Krieg JC, Madey SM, Bottlang M (2004) A laboratory model to evaluate cut out resistance of implants for pertrochanteric fracture fixation. J Orthop Trauma 18(6):361–368

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Konstantinidis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konstantinidis, L., Papaioannou, C., Blanke, P. et al. Failure after osteosynthesis of trochanteric fractures. Where is the limit of osteoporosis?. Osteoporos Int 24, 2701–2706 (2013). https://doi.org/10.1007/s00198-013-2392-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-013-2392-8

Keywords

Navigation