Skip to main content

Advertisement

Log in

The discriminatory capacity of BMD measurements by DXA and dual X-ray and laser (DXL) at the calcaneus including clinical risk factors for detecting patients with vertebral fractures

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Osteoporotic fracture risk depends on bone mineral density (BMD) and clinical risk factors (CRF). Five hundred and eighty-eight untreated female and male outpatient subjects were evaluated, 160 with vertebral fractures. BMD was measured both by using calcaneal dual X-ray and laser (DXL) and dual-energy X-ray absorptiometry (DXA), and CRF were evaluated. Detection frequencies for different BMD methods with or without CRF are presented.

Introduction

Osteoporotic fracture risk depends on bone mineral density and clinical risk factors. DXA of the spine/hip is considered a gold standard for BMD assessment, but due to degenerative conditions, particularly among the older population, assessment of BMD at the lumbar spine has been shown to be of limited significance. Portable calcaneal dual X-ray technology and laser can be an easily obtainable alternative.

Methods

Vertebral fractures were evaluated in a baseline analysis of 588 females and males (median age 64.4, range 17.6–93.1 years), comparing BMD measurements by using DXL and DXA and CRF with/without BMD. One hundred and sixty subjects had radiological verified vertebral fractures. Area under receiver-operating characteristic curves (AUROCC) and univariate and multiple logistic regressions were calculated.

Results

AUROCC for detection of vertebral fractures was comparable for DXL at calcaneus and DXA at femoral neck (DXL 0.665 and DXA 0.670). Odds ratio for prevalent vertebral fracture was generally weak for DXA femoral neck (0.613) and DXL (0.521). Univariate logistic regression among CRF without BMD revealed age, prevalent fragility fracture, and body mass index significantly associated with prevalent vertebral fracture (AUROCC = 0.805). Combining BMD and CRF, a prognostic improvement in case of DXA at femoral neck (AUROCC 0.869, p = 0.02), DXL at calcaneus (AUROCC 0.869, p = 0.059), and DXA at total hip (AUROCC 0.861, p = 0.06) was observed.

Conclusions

DXL was similarly sensitive compared with DXA for identification of subjects with vertebral fragility fractures, and combination of CRF with BMD by DXL or DXA further increased the discriminatory capacity for detection of patients susceptible to vertebral fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. World Health Organization (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group, Geneva. Tech Rep Ser 843:1–129

    Google Scholar 

  2. Bliuc D, Nguyen ND, Milch VE, Nguyen TV, Eisman JA, Center JR (2009) Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA 301:513–521. doi:10.1001/jama.2009.50

    Article  PubMed  CAS  Google Scholar 

  3. Cameron ID, Chen JS, March LM, Simpson JM, Cumming RG, Seibel MJ et al (2010) Hip fracture causes excess mortality owing to cardiovascular and infectious disease in institutionalized older people: a prospective 5-year study. J Bone Miner Res 25:866–872. doi:10.1359/jbmr.091029

    PubMed  Google Scholar 

  4. United States Department of Health and Human Services (2004) Bone health and osteoporosis: a report of the surgeon general. Office of the Surgeon General. Rockville, MD

    Google Scholar 

  5. Reginster JY, Burlet N (2006) Osteoporosis: a still increasing prevalence. Bone 38(Suppl 1):S4–9. doi:10.1016/j.bone.2005.11.024

    Article  PubMed  Google Scholar 

  6. Delmas PD, van de Langerijt L, Watts NB, Eastell R, Genant H, Grauer A, Cahall DL; IMPACT Study Group (2005) Underdiagnosis of vertebral fractures is a worldwide problem: the IMPACT study. J Bone Miner Res 20:557–563. doi:10.1359/jbmr.041214

    Google Scholar 

  7. Hasserius R, Karlsson MK, Jónsson B, Redlund-Johnell I, Johnell O (2005) Long-term morbidity and mortality after a clinically diagnosed vertebral fracture in the elderly—a 12- and 22-year follow-up of 257 patients. Calcif Tissue Int 76:235–242. doi:10.1007/s00223-004-2222-2

    Article  PubMed  CAS  Google Scholar 

  8. Hasserius R, Karlsson MK, Nilsson BE, Redlund-Johnell I, Johnell O; European Vertebral Osteoporosis Study (2003) Prevalent vertebral deformities predict increased mortality and increased fracture rate in both men and women: a 10-year population-based study of 598 individuals from the Swedish cohort in the European Vertebral Osteoporosis Study. Osteoporos Int 14:61–68. doi:10.1007/s00198-002-1316-9

    Article  Google Scholar 

  9. Ismail AA, Pye SR, Cockerill WC, Lunt M, Silman AJ, Reeve J et al (2002) Incidence of limb fracture across Europe: results from the European Prospective Osteoporosis Study (EPOS). Osteoporos Int 13:565–571. doi:10.1007/s001980200074

    Article  PubMed  CAS  Google Scholar 

  10. Cummings SR, Nevitt MC, Browner WS, Stone K, Fox KM, Ensrud KE, Cauley J, Black D, Vogt TM (1995) Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. N Engl J Med 332:767–773. doi:10.1056/NEJM199503233321202

    Article  PubMed  CAS  Google Scholar 

  11. Schott AM, Cormier C, Hans D, Favier F, Hausherr E, Dargent-Molina P, Delmas PD, Ribot C, Sebert JL, Breart G, Meunier PJ (1998) How hip and whole-body bone mineral density predict hip fracture in elderly women: the EPIDOS Prospective Study. Osteoporos Int 8:247–254

    Article  PubMed  CAS  Google Scholar 

  12. Kanis J (2002) Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359:1929–1936. doi:10.1016/S0140-6736(02)08761-5

    Article  PubMed  Google Scholar 

  13. Khaw KT, Reeve J, Luben R, Bingham S, Welch A, Wareham N, Oakes S, Day N (2004) Prediction of total and hip fracture risk in men and women by quantitative ultrasound of the calcaneus: EPIC-Norfolk prospective population study. Lancet 363:197–202. doi:10.1016/S0140-6736(03)15325-1

    Article  PubMed  Google Scholar 

  14. Kullenberg R, Hanson B, Sandberg R, Dahlberg H (2006) Comprehensive osteoporosis management with easy access to bone mineral density measurements. J Eval Clin Pract 12:675–681. doi:10.1111/j.1365-2753.2006.00635.x

    Article  PubMed  Google Scholar 

  15. Black DM, Cummings SR, Genant HK, Nevitt MC, Palermo L, Browner W (1992) Axial and appendicular bone density predict fractures in older women. J Bone Miner Res 7:633–638. doi:10.1002/jbmr.5650070607

    Article  PubMed  CAS  Google Scholar 

  16. Cummings SR, Black DM, Nevitt MC, Browner W, Cauley J, Ensrud K, Genant HK, Palermo L, Scott J, Vogt TM (1993) Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet 341:72–75

    Article  PubMed  CAS  Google Scholar 

  17. Swanpalmer J, Kullenberg R (2000) A new measuring device for quantifying the amount of mineral in the heel bone. Ann N Y Acad Sci 904:115–117

    Article  PubMed  CAS  Google Scholar 

  18. Hakulinen MA, Saarakkala S, Töyräs J, Kröger H, Jurvelin JS (2003) Dual energy x-ray laser measurement of calcaneal bone mineral density. Phys Med Biol 48:1741–1752

    Article  PubMed  CAS  Google Scholar 

  19. Kullenberg R, Falch JA (2003) Prevalence of osteoporosis using bone mineral measurements at the calcaneus by dual X-ray and laser (DXL). Osteoporos Int 14:823–827. doi:10.1007/s00198-003-1442-z

    Article  PubMed  CAS  Google Scholar 

  20. Thorpe JA, Steel SA (2006) The DXL Calscan heel densitometer: evaluation and diagnostic thresholds. Br J Radiol 79:336–341. doi:10.1259/bjr/22191429

    Article  PubMed  CAS  Google Scholar 

  21. Söderpalm AC, Kullenberg R, Swolin-Eide D (2008) The relationship between dual energy X-ray absorptiometry (DXA) and DXA with laser (DXL) measurements in children. J Clin Densitom 11:555–560. doi:10.1016/j.jocd.2008.06.003

    Article  PubMed  Google Scholar 

  22. Johnell O, Gullberg B, Kanis JA, Allander E, Elffors L, Dequeker J, Dilsen G, Gennari C, Lopes Vaz A, Lyritis G et al (1995) Risk factors for hip fracture in European women: the MEDOS Study. Mediterranean Osteoporosis Study. J Bone Miner Res 10:1802–1815. doi:10.1002/jbmr.5650101125

    Article  PubMed  CAS  Google Scholar 

  23. Kanis JA, Johnell O, De Laet C, Johansson H, Oden A, Delmas P, Eisman J, Fujiwara S, Garnero P, Kroger H, McCloskey EV, Mellstrom D, Melton LJ, Pols H, Reeve J, Silman A, Tenenhouse A (2004) A meta-analysis of previous fracture and subsequent fracture risk. Bone 35:375–382. doi:10.1016/j.bone.2004.03.024

    Article  PubMed  CAS  Google Scholar 

  24. Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E (2008) FRAX® and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19:385–397. doi:10.1007/s00198-007-0543-5

    Article  PubMed  CAS  Google Scholar 

  25. Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148. doi:10.1002/jbmr.5650080915

    Article  PubMed  CAS  Google Scholar 

  26. Hind K, Oldroyd B, Truscott JG (2010) In vivo precision of the GE Lunar iDXA® densitometer for the measurement of total-body, lumbar spine, and femoral bone mineral density in adults. J Clin Densitom 13:413–417. doi:10.1016/j.jocd.2010.06.002

    Article  PubMed  Google Scholar 

  27. Hind K, Oldroyd B, Prajapati A, Rhodes L (2012) In vivo precision of dual-energy X-ray absorptiometry-derived hip structural analysis in adults. J Clin Densitom 15:302–307. doi:10.1016/j.jocd.2011.12.004

    Article  PubMed  Google Scholar 

  28. Kullenberg R (2003) Reference database for dual X-ray and laser Calscan bone densitometer. J Clin Densitom 6:367–372

    Article  PubMed  Google Scholar 

  29. De Laet C, Kanis JA, Odén A, Johanson H, Johnell O, Delmas P, Eisman JA, Kroger H, Fujiwara S, Garnero P, McCloskey EV, Mellstrom D, Melton LJ 3rd, Meunier PJ, Pols HA, Reeve J, Silman A, Tenenhouse A (2005) Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int 16:1330–1338. doi:10.1007/s00198-005-1863-y

    Article  PubMed  Google Scholar 

  30. Melton LJ 3rd, Thamer M, Ray NF, Chan JK, Chesnut CH 3rd, Einhorn TA, Johnston CC, Raisz LG, Silverman SL, Siris ES (1997) Fractures attributable to osteoporosis: report from the National Osteoporosis Foundation. J Bone Miner Res 12:16–23. doi:10.1359/jbmr.1997.12.1.16

    Article  PubMed  Google Scholar 

  31. Muschitz C, Patsch J, Buchinger E, Edlmayr E, Nirnberger G, Evdokimidis V, Waneck R, Pietschmann P, Resch H (2009) Prevalence of vertebral fracture in elderly men and women with osteopenia. Wien Klin Wochenschr 121:528–536. doi:10.1007/s00508-009-1216-5

    Article  PubMed  Google Scholar 

  32. Ensrud KE, Schousboe JT (2011) Clinical practice. Vertebral fractures. N Engl J Med 364:1634–1642. doi:10.1056/NEJMcp1009697

    Article  PubMed  CAS  Google Scholar 

  33. Martini G, Valenti R, Gennari L, Salvadori S, Galli B, Nuti R (2004) Dual x-ray and laser absorptiometry of the calcaneus: comparison with quantitative ultrasound and dual-energy X-ray absorptiometry. J Clin Densitom 7:349–354

    Article  PubMed  Google Scholar 

  34. De Laet C, Odén A, Johansson H, Johnell O, Jönsson B, Kanis JA (2005) The impact of the use of multiple risk indicators for fracture on case-finding strategies: a mathematical approach. Osteoporos Int 16:313–318. doi:10.1007/s00198-004-1689-z

    Article  PubMed  Google Scholar 

  35. Elliot-Gibson V, Bogoch ER, Jamal SA, Beaton DE (2004) Practice patterns in the diagnosis and treatment of osteoporosis after a fragility fracture: a systematic review. Osteoporos Int 15:767–778. doi:10.1007/s00198-004-1675-5

    Article  PubMed  CAS  Google Scholar 

  36. McCloskey E (2011) Preventing osteoporotic fractures in older people. Practitioner 255(19–22):2–3

    Google Scholar 

  37. Brismar TB, Janszky I, Toft LI (2010) Calcaneal BMD Obtained by dual X-ray and laser predicts future hip fractures—a prospective study on 4398 Swedish women. J Osteoporos 875647. doi:10.4061/2010/875647

  38. O'Neill TW, Felsenberg D, Varlow J, Cooper C, Kanis JA, Silman AJ (1996) The prevalence of vertebral deformity in European men and women: the European Vertebral Osteoporosis Study. J Bone Miner Res 11:1010–1018. doi:10.1002/jbmr.5650110719

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Vinforce receives academic funding grants.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Muschitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muschitz, C., Dimai, H.P., Kocijan, R. et al. The discriminatory capacity of BMD measurements by DXA and dual X-ray and laser (DXL) at the calcaneus including clinical risk factors for detecting patients with vertebral fractures. Osteoporos Int 24, 2181–2190 (2013). https://doi.org/10.1007/s00198-013-2266-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-013-2266-0

Keywords

Navigation