Skip to main content

Advertisement

Log in

Quantitative computed tomography has higher sensitivity detecting critical bone mineral density compared to dual-energy X-ray absorptiometry in postmenopausal women and elderly men with osteoporotic fractures: a real-life study

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Dual-energy X-ray absorptiometry (DXA) is considered the gold standard for the diagnosis of osteoporosis and assessment of fracture risk despite proven limitations. Quantitative computed tomography (QCT) is regarded as a sensitive method for diagnosis and follow-up. Pathologic fractures are classified as the main clinical manifestation of osteoporosis. The objective of the study was to compare DXA and QCT to determine their sensitivity and discriminatory power.

Materials and methods

Patients aged 50 years and older were included who had DXA of the lumbar spine and femur and additional QCT of the lumbar spine within 365 days. Fractures and bone mineral density (BMD) were retrospectively examined. BMD measurements were analyzed for the detection of osteoporotic fractures. Sensitivity and receiver operating characteristic curve were used for calculations. As an indication for a second radiological examination was given, the results were compared with control groups receiving exclusively DXA or QCT for diagnosis or follow-up.

Results

Overall, BMD measurements of 404 subjects were analyzed. DXA detected 15 (13.2%) patients having pathologic fractures (n = 114) with normal bone density, 66 (57.9%) with osteopenia, and 33 (28.9%) with osteoporosis. QCT categorized no patients having pathologic fractures with healthy bone density, 14 (12.3%) with osteopenia, and 100 (87.7%) with osteoporosis. T-score DXA, trabecular BMD QCT, and cortical BMD QCT correlated weakly. Trabecular BMD QCT and cortical BMD QCT classified osteoporosis with decreased bone mineral density (AUC 0.680; 95% CI 0.618–0.743 and AUC 0.617; 95% CI 0.553–0.682, respectively). T-score DXA could not predict prevalent pathologic fractures. In control groups, each consisting of 50 patients, DXA and QCT were significant classifiers to predict prevalent pathologic fractures.

Conclusion

Our results support that volumetric measurements by QCT in preselected subjects represent a more sensitive method for the diagnosis of osteoporosis and prediction of fractures compared to DXA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AUC:

Area under the curve

cBMD:

Cortical bone mineral density

CI:

95% confidence interval

DXA:

Dual-energy X-ray absorptiometry

L:

Lumbar vertebrae

QCT:

Quantitative computed tomography

ROC:

Receiver operating characteristics

SD:

Standard deviation

T:

Thoracic vertebrae

tBMD:

Trabecular bone mineral density

References

  1. Dachverband Osteologie e.V. (2017) S3-Leitlinie Prophylaxe, Diagnostik und Therapie der Osteoporose. Version 1.0, Date: 31 December 2017. https://register.awmf.org/de/leitlinien/detail/183-001. Accessed 10 Nov 2022

  2. NIH Consensus Development Panel on Osteoporosis Prevention D and T (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA J Am Med Assoc 285:785–795. https://doi.org/10.1001/jama.285.6.785

    Article  Google Scholar 

  3. Cherney DD, Laymon MS, McNitt A, Yuly S (2002) A study on the influence of calcified intervertebral disk and aorta in determining bone mineral density. J Clin Densitom 5:193–198. https://doi.org/10.1385/JCD:5:2:193

    Article  PubMed  Google Scholar 

  4. Orwoll ES, Oviatt SK, Mann T (1990) The impact of osteophytic and vascular calcifications on vertebral mineral density measurements in men*. J Clin Endocrinol Metab 70:1202–1207. https://doi.org/10.1210/jcem-70-4-1202

    Article  CAS  PubMed  Google Scholar 

  5. Rand T, Schneider B, Grampp S, Wunderbaldinger P, Migsits H, Imhof H (1997) Influence of osteophytic size on bone mineral density measured by dual X-ray absorptiometry. Acta Radiol 38:210–213. https://doi.org/10.1080/02841859709172051

    Article  CAS  Google Scholar 

  6. Link TM (2013) Axial and peripheral QCT. In: Guglielmi G (ed) Osteoporosis and bone densitometry measurements medical radiology. Springer, Berlin, pp 123–134. https://doi.org/10.1007/174_2012_729

    Chapter  Google Scholar 

  7. Cann CE, Genant HK (1980) Precise measurement of vertebral mineral content using computed tomography. J Comput Assist Tomogr 4:493–500. https://doi.org/10.1097/00004728-198008000-00018

    Article  CAS  PubMed  Google Scholar 

  8. Kalender WA, Klotz E, Suess C (1987) Vertebral bone mineral analysis: an integrated approach with CT. Radiology 164:419–423. https://doi.org/10.1148/radiology.164.2.3602380

    Article  CAS  PubMed  Google Scholar 

  9. Felsenberg D (2001) Supporting function of collagen and hydroxyapatite. Structure and function of bone. Pharm Unserer Zeit 30:488–494. https://doi.org/10.1002/1615-1003(200111)30:6%3c488::AID-PAUZ488%3e3.0.CO;2-U

    Article  CAS  PubMed  Google Scholar 

  10. Link TM (2012) Osteoporosis imaging: state of the art and advanced imaging. Radiology 263:3–17. https://doi.org/10.1148/radiol.12110462

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kanis JA, McCloskey EV, Johansson H, Oden A, Melton LJ, Khaltaev N (2008) A reference standard for the description of osteoporosis. Bone 42:467–475. https://doi.org/10.1016/j.bone.2007.11.001

    Article  CAS  PubMed  Google Scholar 

  12. Link TM, Kazakia G (2020) Update on imaging-based measurement of bone mineral density and quality. Curr Rheumatol Rep 22:13. https://doi.org/10.1007/s11926-020-00892-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Link TM, Lang TF (2014) Axial QCT: clinical applications and new developments. J Clin Densitom 17:438–448. https://doi.org/10.1016/j.jocd.2014.04.119

    Article  PubMed  Google Scholar 

  14. Kröger H, Lunt M, Reeve J, Dequeker J, Adams JE, Birkenhager JC, Diaz Curiel M, Felsenberg D, Hyldstrup L, Kotzki P, Laval-Jeantet A-M, Lips P, Louis O, Perez Cano R, Reiners C, Ribot C, Ruegsegger P, Schneider P, Braillon P, Pearson J (1999) Bone density reduction in various measurement sites in men and women with osteoporotic fractures of spine and hip: the European quantitation of osteoporosis study. Calcif Tissue Int 64:191–199. https://doi.org/10.1007/s002239900601

    Article  Google Scholar 

  15. Johnell O, Kanis JA, Oden A, Johansson H, De Laet C, Delmas P, Eisman JA, Fujiwara S, Kroger H, Mellstrom D, Meunier PJ, Melton LJ, O’Neill T, Pols H, Reeve J, Silman A, Tenenhouse A (2005) Predictive value of BMD for hip and other fractures. J Bone Miner Res 20:1185–1194. https://doi.org/10.1359/JBMR.050304

    Article  PubMed  Google Scholar 

  16. Glaser DL, Kaplan FS (1997) Osteoporosis. Spine (Phila Pa 1976) 22:12S-16S. https://doi.org/10.1097/00007632-199712151-00003

    Article  CAS  Google Scholar 

  17. Camacho PM, Petak SM, Binkley N, Diab DL, Eldeiry LS, Farooki A, Harris ST, Hurley DL, Kelly J, Lewiecki EM, Pessah-Pollack R, McClung M, Wimalawansa SJ, Watts NB (2020) American Association of Clinical Endocrinologists/American College of Endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis—2020 update. Endocr Pract 26:1–46. https://doi.org/10.4158/GL-2020-0524SUPPL

    Article  PubMed  Google Scholar 

  18. Bliuc D, Alarkawi D, Nguyen TV, Eisman JA, Center JR (2015) Risk of subsequent fractures and mortality in elderly women and men with fragility fractures with and without osteoporotic bone density: the Dubbo osteoporosis epidemiology study. J Bone Miner Res 30:637–646. https://doi.org/10.1002/jbmr.2393

    Article  Google Scholar 

  19. Siris ES, Brenneman SK, Barrett-Connor E, Miller PD, Sajjan S, Berger ML, Chen Y-T (2006) The effect of age and bone mineral density on the absolute, excess, and relative risk of fracture in postmenopausal women aged 50–99: results from the National Osteoporosis Risk Assessment (NORA). Osteoporos Int 17:565–574. https://doi.org/10.1007/s00198-005-0027-4

    Article  CAS  PubMed  Google Scholar 

  20. Wang Y, Yu S, Hsu C, Tsai C, Cheng T (2020) Underestimated fracture risk in postmenopausal women—application of the hybrid intervention threshold. Osteoporos Int 31:475–483. https://doi.org/10.1007/s00198-019-05201-5

    Article  CAS  PubMed  Google Scholar 

  21. Adami G, Saag KG (2019) Glucocorticoid-induced osteoporosis: 2019 concise clinical review. Osteoporos Int 30:1145–1156. https://doi.org/10.1007/s00198-019-04906-x

    Article  CAS  PubMed  Google Scholar 

  22. Mosekilde L (2000) Age-related changes in bone mass, structure, and strength—effects of loading. Z Rheumatol 59:I1–I9. https://doi.org/10.1007/s003930070031

    Article  Google Scholar 

  23. Yu W, Glüer C, Grampp S, Jergas M, Fuerst T, Wu CY, Lu Y, Fan B, Genant HK (1995) Spinal bone mineral assessment in postmenopausal women: a comparison between dual X-ray absorptiometry and quantitative computed tomography. Osteoporos Int 5:433–439. https://doi.org/10.1007/BF01626604

    Article  CAS  PubMed  Google Scholar 

  24. Li N, Li X, Xu L, Sun W, Cheng X, Tian W (2013) Comparison of QCT and DXA: osteoporosis detection rates in postmenopausal women. Int J Endocrinol 2013:1–5. https://doi.org/10.1155/2013/895474

    Article  Google Scholar 

  25. Hadji P, Klein S, Gothe H, Häussler B, Kless T, Schmidt T, Steinle T, Verheyen F, Linder R (2013) The epidemiology of osteoporosis. Dtsch Arztebl Int. https://doi.org/10.3238/arztebl.2013.0052

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hui SL, Slemenda CW, Johnston CC (1988) Age and bone mass as predictors of fracture in a prospective study. J Clin Investig 81:1804–1809. https://doi.org/10.1172/JCI113523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Khosla S, Riggs BL (2005) Pathophysiology of age-related bone loss and osteoporosis. Endocrinol Metab Clin N Am 34:1015–1030. https://doi.org/10.1016/j.ecl.2005.07.009

    Article  CAS  Google Scholar 

  28. Rico H, Revilla M, Villa LF, de Buergo MA (1993) Age-related differences in total and regional bone mass: a cross-sectional study with DXA in 429 normal women. Osteoporos Int 3:154–159. https://doi.org/10.1007/BF01623277

    Article  CAS  PubMed  Google Scholar 

  29. Lupsa BC, Insogna K (2015) Bone health and osteoporosis. Endocrinol Metab Clin N Am 44:517–530. https://doi.org/10.1016/j.ecl.2015.05.002

    Article  Google Scholar 

  30. Looker AC, Melton LJ, Harris T, Borrud L, Shepherd J, McGowan J (2009) Age, gender, and race/ethnic differences in total body and subregional bone density. Osteoporos Int 20:1141–1149. https://doi.org/10.1007/s00198-008-0809-6

    Article  CAS  PubMed  Google Scholar 

  31. Bergot C, Laval-Jeantet AM, Hutchinson K, Dautraix I, Caulin F, Genant HK (2001) A comparison of spinal quantitative computed tomography with dual energy X-ray absorptiometry in European women with vertebral and nonvertebral fractures. Calcif Tissue Int 68:74–82. https://doi.org/10.1007/BF02678144

    Article  CAS  PubMed  Google Scholar 

  32. Löffler MT, Jacob A, Valentinitsch A, Rienmüller A, Zimmer C, Ryang YM, Baum T, Kirschke JS (2019) Improved prediction of incident vertebral fractures using opportunistic QCT compared to DXA. Eur Radiol 29:4980–4989. https://doi.org/10.1007/s00330-019-06018-w

    Article  PubMed Central  Google Scholar 

  33. Pickhardt PJ, Pooler BD, Lauder T, del Rio AM, Bruce RJ, Binkley N (2013) Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications. Ann Intern Med 158:588. https://doi.org/10.7326/0003-4819-158-8-201304160-00003

    Article  PubMed  PubMed Central  Google Scholar 

  34. Marinova M, Edon B, Wolter K, Katsimbari B, Schild HH, Strunk HM (2015) Use of routine thoracic and abdominal computed tomography scans for assessing bone mineral density and detecting osteoporosis. Curr Med Res Opin 31:1871–1881. https://doi.org/10.1185/03007995.2015.1074892

    Article  PubMed  Google Scholar 

  35. Szulc P, Munoz F, Duboeuf F, Marchand F, Delmas PD (2005) Bone mineral density predicts osteoporotic fractures in elderly men: the MINOS study. Osteoporos Int 16:1184–1192. https://doi.org/10.1007/s00198-005-1970-9

    Article  PubMed  Google Scholar 

  36. Guglielmi G, Grimston SK, Fischer KC, Pacifici R (1994) Osteoporosis: diagnosis with lateral and posteroanterior dual X-ray absorptiometry compared with quantitative CT. Radiology 192:845–850. https://doi.org/10.1148/radiology.192.3.8058958

    Article  CAS  PubMed  Google Scholar 

  37. Rand Th, Seidl G, Kainberger F, Resch A, Hittmair K, Schneider B, Glüer CC, Imhof H (1997) Impact of spinal degenerative changes on the evaluation of bone mineral density with dual energy X-ray absorptiometry (DXA). Calcif Tissue Int 60:430–433. https://doi.org/10.1007/s002239900258

    Article  CAS  PubMed  Google Scholar 

  38. Tenne M, McGuigan F, Besjakov J, Gerdhem P, Åkesson K (2013) Degenerative changes at the lumbar spine—implications for bone mineral density measurement in elderly women. Osteoporos Int 24:1419–1428. https://doi.org/10.1007/s00198-012-2048-0

    Article  CAS  PubMed  Google Scholar 

  39. Zou D, Jiang S, Zhou S, Sun Z, Zhong W, Du G, Li W (2020) Prevalence of osteoporosis in patients undergoing lumbar fusion for lumbar degenerative diseases. Spine (Phila Pa 1976) 45:E406–E410. https://doi.org/10.1097/BRS.0000000000003284

    Article  PubMed  Google Scholar 

  40. Jaovisidha S, Sartoris DJ, Martin EME, De Maeseneer M, Szollar SM, Deftos LJ (1997) Influence of spondylopathy on bone densitometry using dual energy X-ray absorptiometry. Calcif Tissue Int 60:424–429. https://doi.org/10.1007/s002239900257

    Article  CAS  PubMed  Google Scholar 

  41. Frohn J, Wilken T, Falk S, Stutte HJ, Kollath J, Hör G (1991) Effect of aortic sclerosis on bone mineral measurements by dual-photon absorptiometry. J Nucl Med 32:259–262

    CAS  Google Scholar 

  42. Reid IR, Evans MC, Ames R, Wattie DJ (1991) The influence of osteophytes and aortic calcification on spinal mineral density in postmenopausal women*. J Clin Endocrinol Metab 72:1372–1374. https://doi.org/10.1210/jcem-72-6-1372

    Article  CAS  PubMed  Google Scholar 

  43. Rehman Q, Lang T, Modin G, Lane NE (2002) Quantitative computed tomography of the lumbar spine, not dual X-ray absorptiometry, is an independent predictor of prevalent vertebral fractures in postmenopausal women with osteopenia receiving long-term glucocorticoid and hormone-replacement therapy. Arthritis Rheum 46:1292–1297. https://doi.org/10.1002/art.10277

    Article  CAS  PubMed  Google Scholar 

  44. Wang X, Sanyal A, Cawthon PM, Palermo L, Jekir M, Christensen J, Ensrud KE, Cummings SR, Orwoll E, Black DM, Keaveny TM (2012) Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans. J Bone Miner Res 27:808–816. https://doi.org/10.1002/jbmr.1539

    Article  PubMed  Google Scholar 

  45. Alacreu E, Moratal D, Arana E (2017) Opportunistic screening for osteoporosis by routine CT in Southern Europe. Osteoporos Int 28:983–990. https://doi.org/10.1007/s00198-016-3804-3

    Article  PubMed  Google Scholar 

  46. Yu W, Glüer C-C, Fuerst T, Grampp S, Li J, Lu Y, Genant HK (1995) Influence of degenerative joint disease on spinal bone mineral measurements in postmenopausal women. Calcif Tissue Int 57:169–174. https://doi.org/10.1007/BF00310253

    Article  CAS  PubMed  Google Scholar 

  47. Christiansen BA, Kopperdahl DL, Kiel DP, Keaveny TM, Bouxsein ML (2011) Mechanical contributions of the cortical and trabecular compartments contribute to differences in age-related changes in vertebral body strength in men and women assessed by QCT-based finite element analysis. J Bone Miner Res 26:974–983. https://doi.org/10.1002/jbmr.287

    Article  PubMed Central  Google Scholar 

  48. Thiele OC, Eckhardt C, Linke B, Schneider E, Lill CA (2007) Factors affecting the stability of screws in human cortical osteoporotic bone. J Bone Jt Surg Br 89-B:701–705. https://doi.org/10.1302/0301-620X.89B5.18504

    Article  Google Scholar 

  49. Grampp S, Jergas M, Lang P, Steiner E, Fuerst T, Glüer CC, Mathur A, Genant HK (1996) Quantitative CT assessment of the lumbar spine and radius in patients with osteoporosis. Am J Roentgenol 167:133–140. https://doi.org/10.2214/ajr.167.1.8659357

    Article  CAS  Google Scholar 

  50. Ito M, Hayashi K, Kawahara Y, Uetani M, Imaizummi Y (1993) The relationship of trabecular and cortical bone mineral density to spinal fractures. Investig Radiol 28:573–580. https://doi.org/10.1097/00004424-199307000-00003

    Article  CAS  Google Scholar 

  51. Genant HK, Libanati C, Engelke K, Zanchetta JR, Høiseth A, Yuen CK, Stonkus S, Bolognese MA, Franek E, Fuerst T, Radcliffe H-S, McClung MR (2013) Improvements in hip trabecular, subcortical, and cortical density and mass in postmenopausal women with osteoporosis treated with denosumab. Bone 56:482–488. https://doi.org/10.1016/j.bone.2013.07.011

    Article  CAS  PubMed  Google Scholar 

  52. Silva MJ, Wang C, Keaveny TM, Hayes WC (1994) Direct and computed tomography thickness measurements of the human, lumbar vertebral shell and endplate. Bone 15:409–414. https://doi.org/10.1016/8756-3282(94)90817-6

    Article  CAS  PubMed  Google Scholar 

  53. Damm T, Peña JA, Campbell GM, Bastgen J, Barkmann R, Glüer C-C (2019) Improved accuracy in the assessment of vertebral cortical thickness by quantitative computed tomography using the Iterative Convolution OptimizatioN (ICON) method. Bone 120:194–203. https://doi.org/10.1016/j.bone.2018.08.024

    Article  PubMed  Google Scholar 

  54. Milisic L, Vegar-Zubovic S, Valjevac A, Hasanovic-Vučković S (2020) Bone mineral density assessment by DXA vs. QCT in postmenopausal females with central obesity. Curr Aging Sci 13:153–161. https://doi.org/10.2174/1874609812666190912155525

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Dr. med. Andrea Baur-Melnyk and PD Dr. Dipl.-Ing. (FH) Matthias Woiczinski for assistance and support.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by EB, IF-P and RS. The first draft of the manuscript was written by EB and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Johanna Theresia Biebl.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the responsible local Ethics Committee of Ludwig Maximilian University of Munich (no. 20-1126).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The study was retrospectively registered in the Federal Institute for Drugs and Medical Devices on 06.10.2022 under the ID DRKS00024124.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boehm, E., Kraft, E., Biebl, J.T. et al. Quantitative computed tomography has higher sensitivity detecting critical bone mineral density compared to dual-energy X-ray absorptiometry in postmenopausal women and elderly men with osteoporotic fractures: a real-life study. Arch Orthop Trauma Surg 144, 179–188 (2024). https://doi.org/10.1007/s00402-023-05070-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-023-05070-y

Keywords

Navigation