Skip to main content

Advertisement

Log in

Impaired bone mineralization accompanied by low vitamin D and secondary hyperparathyroidism in patients with femoral neck fracture

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Although it is well established that a decrease in bone mass increases the risk of osteoporotic fractures, the proportion of fractures attributable to areal bone mineral density (BMD) is rather low. Here, we have identified bone mineralization defects together with low serum 25-hydroxyvitamin D (25-(OH) D) levels as additional factors associated with femoral neck fractures.

Introduction

Osteoporotic fractures of the femoral neck are associated with increased morbidity and mortality. Although it is well established that a decrease in bone mass increases the risk of osteoporotic fractures, the proportion of fractures attributable to areal BMD is rather low. To identify possible additional factors influencing femur neck fragility, we analyzed patients with femoral neck fracture.

Methods

We performed a detailed clinical and histomorphometrical evaluation on 103 patients with femoral neck fracture including dual-energy X-ray absorptiometry, laboratory parameters, and histomorphometric and bone mineral density distribution (BMDD) analyses of undecalcified processed biopsies of the femoral head and set them in direct comparison to skeletal healthy control individuals.

Results

Patients with femoral neck fracture displayed significantly lower serum 25-(OH) D levels and increased serum parathyroid hormone (PTH) compared to controls. Histomorphometric analysis revealed not only a decreased bone volume and trabecular thickness in the biopsies of the patients, but also a significant increase of osteoid indices. BMDD analysis showed increased heterogeneity of mineralization in patients with femoral neck fracture. Moreover, patients with femoral neck fracture and serum 25-(OH) D levels below 12 μg/l displayed significantly thinner trabecular bone.

Conclusion

Taken together, our data suggest that impaired bone mineralization accompanied by low serum 25-(OH) D levels is of major importance in the etiology of femoral neck fractures. Therefore, balancing serum 25-(OH) D levels and thereby normalizing PTH serum levels may counteract pronounced mineralization defects and might decrease the incidence of femoral neck fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Seeman E, Delmas PD (2006) Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med 354:2250–2261

    Article  PubMed  CAS  Google Scholar 

  2. Lane NE (2006) Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol 194:S3–11

    Article  PubMed  CAS  Google Scholar 

  3. Mazess R, Collick B, Trempe J, Barden H, Hanson J (1989) Performance evaluation of a dual-energy x-ray bone densitometer. Calcif Tissue Int 44:228–232

    Article  PubMed  CAS  Google Scholar 

  4. Boehm HF, Eckstein F, Wunderer C, Kuhn V, Lochmueller EM, Schreiber K, Mueller D, Rummeny EJ, Link TM (2005) Improved performance of hip DXA using a novel region of interest in the upper part of the femoral neck: in vitro study using bone strength as a standard of reference. J Clin Densitom 8:488–494

    Article  PubMed  Google Scholar 

  5. Bousson V, Le Bras A, Roqueplan F et al (2006) Volumetric quantitative computed tomography of the proximal femur: relationships linking geometric and densitometric variables to bone strength. Role for compact bone. Osteoporos Int 17:855–864

    Article  PubMed  CAS  Google Scholar 

  6. Stone KL, Seeley DG, Lui LY, Cauley JA, Ensrud K, Browner WS, Nevitt MC, Cummings SR (2003) BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures. J Bone Mineral Res 18:1947–1954

    Article  Google Scholar 

  7. Black DM, Bouxsein ML, Marshall LM, Cummings SR, Lang TF, Cauley JA, Ensrud KE, Nielson CM, Orwoll ES (2008) Proximal femoral structure and the prediction of hip fracture in men: a large prospective study using QCT. J Bone Mineral Res 23:1326–1333

    Article  Google Scholar 

  8. Buitrago-Tellez CH, Bonnaire F, Schulze C, Gufler H, Honninger A, Kuner E, Langer M (1997) Quantitative CT assessment of the proximal femur. Experimental studies on its correlation with breaking load in femoral neck fractures. RöFö 167:627–632

    PubMed  CAS  Google Scholar 

  9. Huber MB, Carballido-Gamio J, Bauer JS, Baum T, Eckstein F, Lochmuller EM, Majumdar S, Link TM (2008) Proximal femur specimens: automated 3D trabecular bone mineral density analysis at multidetector CT—correlation with biomechanical strength measurement. Radiology 247:472–481

    PubMed  Google Scholar 

  10. Fazzalari N, Moore RJ, Manthey BA, Vernon-Roberts B (1989) Comparative study of iliac crest and proximal femur histomorphometry in normal patients. J Clin Pathol 42:745–748

    Article  PubMed  CAS  Google Scholar 

  11. Amling M, Herden S, Posl M, Hahn M, Ritzel H, Delling G (1996) Heterogeneity of the skeleton: comparison of the trabecular microarchitecture of the spine, the iliac crest, the femur, and the calcaneus. J Bone Mineral Res 11:36–45

    Article  CAS  Google Scholar 

  12. Loveridge N, Power J, Reeve J, Boyde A (2004) Bone mineralization density and femoral neck fragility. Bone 35:929–941

    Article  PubMed  Google Scholar 

  13. Zebaze RM, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, Price RI, Mackie EJ, Seeman E (2010) Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 375:1729–1736

    Article  PubMed  Google Scholar 

  14. Khosla S, Kleerekoper M (1999) Biochemical markers of bone turnover. In: Favus MG (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 4th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  15. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Mineral Res 2:595–610

    Article  CAS  Google Scholar 

  16. Aaron JE, Makins NB, Francis RM, Peacock M (1984) Staining of the calcification front in human bone using contrasting fluorochromes in vitro. J Histochem Cytochem 32:1251–1261

    Article  PubMed  CAS  Google Scholar 

  17. Compston JE, Vedi S, Webb A (1985) Relationship between toluidine blue-stained calcification fronts and tetracycline-labeled surfaces in normal human iliac crest biopsies. Calcif Tissue Int 37:32–35

    Article  PubMed  CAS  Google Scholar 

  18. Roschger P, Paschalis EP, Fratzl P, Klaushofer K (2008) Bone mineralization density distribution in health and disease. Bone 42:456–466

    Article  PubMed  CAS  Google Scholar 

  19. Roschger P, Plenk H Jr, Klaushofer K, Eschberger J (1995) A new scanning electron microscopy approach to the quantification of bone mineral distribution: backscattered electron image grey-levels correlated to calcium K alpha-line intensities. Scanning Microsc 9:75–86

    PubMed  CAS  Google Scholar 

  20. Boyde A, Maconnachie E, Reid SA, Delling G, Mundy GR (1986) Scanning electron microscopy in bone pathology: review of methods, potential and applications. Scan Electron Microsc 4:1537–1554

    Google Scholar 

  21. Jones SJ, Glorieux FH, Travers R, Boyde A (1999) The microscopic structure of bone in normal children and patients with osteogenesis imperfecta: a survey using backscattered electron imaging. Calcif Tissue Int 64:8–17

    Article  PubMed  CAS  Google Scholar 

  22. Lai JK, Lucas RM, Clements MS, Roddam AW, Banks E (2010) Hip fracture risk in relation to vitamin D supplementation and serum 25-hydroxyvitamin D levels: a systematic review and meta-analysis of randomised controlled trials and observational studies. BMC Publ Health 10:331

    Article  Google Scholar 

  23. Tsangari H, Findlay DM, Zannettino AC, Pan B, Kuliwaba JS, Fazzalari NL (2006) Evidence for reduced bone formation surface relative to bone resorption surface in female femoral fragility fracture patients. Bone 39:1226–1235

    Article  PubMed  Google Scholar 

  24. Priemel M, von Domarus C, Klatte TO et al (2009) Bone mineralization defects and vitamin D deficiency: histomorphometric analysis of iliac crest bone biopsies and circulating 25-hydroxyvitamin D in 675 patients. J Bone Miner Res 25:305–312

    Article  Google Scholar 

  25. Lips P (2001) Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev 22:477–501

    Article  PubMed  CAS  Google Scholar 

  26. Fisher A, Srikusalanukul W, Davis M, Smith P (2010) Hip fracture type: important role of parathyroid hormone (PTH) response to hypovitaminosis D. Bone 47:400–407

    Article  PubMed  CAS  Google Scholar 

  27. Glendenning P, Chew GT, Seymour HM, Gillett MJ, Goldswain PR, Inderjeeth CA, Vasikaran SD, Taranto M, Musk AA, Fraser WD (2009) Serum 25-hydroxyvitamin D levels in vitamin D-insufficient hip fracture patients after supplementation with ergocalciferol and cholecalciferol. Bone 45:870–875

    Article  PubMed  CAS  Google Scholar 

  28. Madsen CM, Jorgensen HL, Lind B, Ogarrio HW, Riis T, Schwarz P, Duus BR, Lauritzen JB (2012) Secondary hyperparathyroidism and mortality in hip fracture patients compared to a control group from general practice. Injury (in press)

  29. Ruffoni D, Fratzl P, Roschger P, Phipps R, Klaushofer K, Weinkamer R (2008) Effect of temporal changes in bone turnover on the bone mineralization density distribution: a computer simulation study. J Bone Miner Res 23:1905–1914

    Article  PubMed  CAS  Google Scholar 

  30. Busse B, Hahn M, Soltau M, Zustin J, Puschel K, Duda GN, Amling M (2009) Increased calcium content and inhomogeneity of mineralization render bone toughness in osteoporosis: mineralization, morphology and biomechanics of human single trabeculae. Bone 45:1034–1043

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Johannes Keller for the critical reading of the manuscript and the helpful comments. This work was supported by grants from the Bundesministerium für Bildung und Forschung (BMBF) within the framework of the consortium Osteopath (01EC1006F) to M.A.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Amling.

Additional information

S. Seitz, T. Koehne, and C. Ries contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seitz, S., Koehne, T., Ries, C. et al. Impaired bone mineralization accompanied by low vitamin D and secondary hyperparathyroidism in patients with femoral neck fracture. Osteoporos Int 24, 641–649 (2013). https://doi.org/10.1007/s00198-012-2011-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-012-2011-0

Keywords

Navigation