Skip to main content

Advertisement

Log in

Polymorphisms of the peroxisome proliferator-activated receptor γ (PPARγ) gene are associated with osteoporosis

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Stimulation of PPARγ turns mesenchymal stem cells into adipocytes instead of osteoblasts. We investigated the effect of polymorphisms in the PPARγ gene on BMD and fracture risk in two Danish cohorts and found opposing effects of certain SNPs and haplotypes in the two cohorts probably owing to environmental factors.

Introduction

Stimulation of PPARγ causes development of mesenchymal stem cells to adipocytes instead of osteoblasts leading to decreased osteoblast number and BMD. The aim of this study was to examine the effect of PPARG polymorphisms on BMD and fracture risk in two Danish cohorts: AROS, a case-control population comprising 809 individuals and DOPS, a population comprising 1,716 perimenopausal women allocated to hormone therapy or not at baseline and followed for 10 years. On the basis of linkage disequilibrium between SNPs throughout the gene and previous studies we chose 10 polymorphisms for investigation.

Methods

In AROS, individuals heterozygous for the polymorphisms rs12497191, rs4135263, and rs1151999 had an increased risk of vertebral fractures (OR = 1.48−1.76, p = 0.005−0.04) compared with individuals homozygous for the common allele. In DOPS, individuals heterozygous for rs1151999 had an increased BMD at the hip sites (p ≤ 0.02). An interaction between rs1151999 and diet was found on BMD in both cohorts.

Results

For the polymorphism rs1152003 there was an interaction with body weight on BMD at all sites in both cohorts (p ≤ 0.07). Stratified analyses revealed that in the high weight group in AROS individuals homozygous for the variant allele had a decreased BMD (p ≤ 0.02), whereas the same pattern was found in the low weight group in DOPS (p ≤ 0.03). A number of haplotype associations were found as well, the direction of which was opposite in the two cohorts.

Conclusion

Our study suggests an association SNPs in PPARG and haplotypes thereof and BMD and fracture risk. The effect however appears to be modifiable by environmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pocock NA, Eisman JA, Yeates MG, Sambrook PN, Eberl S (1986) Physical fitness is a major determinant of femoral neck and lumbar spine bone mineral density. J Clin Invest 78:618–621

    Article  PubMed  CAS  Google Scholar 

  2. Hermann AP, Brot C, Gram J, Kolthoff N, Mosekilde L (2000) Premenopausal smoking and bone density in 2015 perimenopausal women. J Bone Miner Res 15:780–787

    Article  PubMed  CAS  Google Scholar 

  3. Huuskonen J, Vaisanen SB, Kroger H, Jurvelin C, Bouchard C, Alhava E, Rauramaa R (2000) Determinants of bone mineral density in middle aged men: a population-based study. Osteoporos Int 11:702–708

    Article  PubMed  CAS  Google Scholar 

  4. Slemenda CW, Christian JC, Williams CJ, Norton JA, Johnston CC Jr (1991) Genetic determinants of bone mass in adult women: a reevaluation of the twin model and the potential importance of gene interaction on heritability estimates. J Bone Miner Res 6:561–567

    Article  PubMed  CAS  Google Scholar 

  5. Hunter D, De Lange M, Snieder H, MacGregor AJ, Swaminathan R, Thakker RV, Spector TD (2001) Genetic contribution to bone metabolism, calcium excretion, and vitamin D and parathyroid hormone regulation. J Bone Miner Res 16:371–378

    Article  PubMed  CAS  Google Scholar 

  6. Richards JB, Rivadeneira F, Inouye M, Pastinen TM, Soranzo N, Wilson SG, Andrew T, Falchi M, Gwilliam R, Ahmadi KR, Valdes AM, Arp P, Whittaker P, Verlaan DJ, Jhamai M, Kumanduri V, Moorhouse M, van Meurs JB, Hofman A, Pols HA, Hart D, Zhai G, Kato BS, Mullin BH, Zhang F, Deloukas P, Uitterlinden AG, Spector TD (2008) Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet 371:1505–1512

    Article  PubMed  CAS  Google Scholar 

  7. Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, Walters GB, Ingvarsson T, Jonsdottir T, Saemundsdottir J, Center JR, Nguyen TV, Bagger Y, Gulcher JR, Eisman JA, Christiansen C, Sigurdsson G, Kong A, Thorsteinsdottir U, Stefansson K (2008) Multiple genetic loci for bone mineral density and fractures. N Engl J Med 358:2355–2365

    Article  PubMed  CAS  Google Scholar 

  8. Ali AA, Weinstein RS, Stewart SA, Parfitt AM, Manolagas SC, Jilka RL (2005) Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. Endocrinology 146:1226–1235

    Article  PubMed  CAS  Google Scholar 

  9. Fajas L, Fruchart JC, Auwerx J (1998) PPARgamma3 mRNA: a distinct PPARgamma mRNA subtype transcribed from an independent promoter. FEBS Lett 438:55–60

    Article  PubMed  CAS  Google Scholar 

  10. Fajas L, Auboeuf D, Raspe E, Schoonjans K, Lefebvre AM, Saladin R, Najib J, Laville M, Fruchart JC, Deeb S, Vidal-Puig A, Flier J, Briggs MR, Staels B, Vidal H, Auwerx J (1997) The organization, promoter analysis, and expression of the human PPARgamma gene. J Biol Chem 272:18779–18789

    Article  PubMed  CAS  Google Scholar 

  11. Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM (1994) mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 8:1224–1234

    Article  PubMed  CAS  Google Scholar 

  12. Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS, Devchand P, Wahli W, Willson TM, Lenhard JM, Lehmann JM (1997) Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci USA 94:4318–4323

    Article  PubMed  CAS  Google Scholar 

  13. Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman BM, Evans RM (1995) 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 83:803–812

    Article  PubMed  CAS  Google Scholar 

  14. Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA (1995) An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem 270:12953–12956

    Article  PubMed  CAS  Google Scholar 

  15. Meunier P, Aaron J, Edouard C, Vignon G (1971) Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin Orthop Relat Res 80:147–154

    Article  PubMed  CAS  Google Scholar 

  16. Rzonca SO, Suva LJ, Gaddy D, Montague DC, Lecka-Czernik B (2004) Bone is a target for the antidiabetic compound rosiglitazone. Endocrinology 145(1):401

    Article  PubMed  CAS  Google Scholar 

  17. Soroceanu MA, Miao D, Bai XY, Su H, Goltzman D, Karaplis AC (2004) Rosiglitazone impacts negatively on bone by promoting osteoblast/osteocyte apoptosis. J Endocrinol 183(1):203–216

    Article  PubMed  CAS  Google Scholar 

  18. Ogawa S, Urano T, Hosoi T, Miyao M, Hoshino S, Fujita M, Shiraki M, Orimo H, Ouchi Y, Inoue S (1999) Association of bone mineral density with a polymorphism of the peroxisome proliferator-activated receptor gamma gene: PPARgamma expression in osteoblasts. Biochem Biophys Res Commun 260:122–126

    Article  PubMed  CAS  Google Scholar 

  19. Kiel DP, Ferrari S, Cupples LA, Karasik D, Dupuis J, Rosen CJ, Imamovic A, Demissie S (2005) Polymorphisms in the PPARg gene influence bone density in humans. J Bone Miner Res 20:S234 (Ref Type: Abstract)

    Google Scholar 

  20. Mosekilde L, Hermann AP, Beck-Nielsen H, Charles P, Nielsen SP, Sorensen OH (1999) The Danish Osteoporosis Prevention Study (DOPS): project design and inclusion of 2000 normal perimenopausal women. Maturitas 31:207–219

    Article  PubMed  CAS  Google Scholar 

  21. Genant HK, Grampp S, Gluer CC, Faulkner KG, Jergas M, Engelke K, Hagiwara S, Van Kuijk C (1994) Universal standardization for dual x-ray absorptiometry: patient and phantom cross-calibration results [see comments]. J Bone Miner Res 9:1503–1514

    Article  PubMed  CAS  Google Scholar 

  22. Abrahamsen B, Gram J, Hansen TB, Beck-Nielsen H (1995) Cross calibration of QDR-2000 and QDR-1000 dual-energy X-ray densitometers for bone mineral and soft-tissue measurements. Bone 16:385–390

    Article  PubMed  CAS  Google Scholar 

  23. McCloskey EV, Spector TD, Eyres KS, Fern ED, O’Rourke N, Vasikaran S, Kanis JA (1993) The assessment of vertebral deformity: a method for use in population studies and clinical trials. Osteoporos Int 3:138–147

    Article  PubMed  CAS  Google Scholar 

  24. Heinemeyer T, Wingender E, Reuter I, Hermjakob H, Kel AE, Kel OV, Ignatieva EV, Ananko EA, Podkolodnaya OA, Kolpakov FA, Podkolodny NL, Kolchanov NA (1998) Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL. Nucleic Acids Res 26:362–367

    Article  PubMed  CAS  Google Scholar 

  25. Meirhaeghe A, Fajas L, Gouilleux F, Cottel D, Helbecque N, Auwerx J, Amouyel P (2003) A functional polymorphism in a STAT5B site of the human PPAR gamma 3 gene promoter affects height and lipid metabolism in a French population. Arterioscler Thromb Vasc Biol 23:289–294

    Article  PubMed  CAS  Google Scholar 

  26. Wei Q, Jacobs DR Jr, Schreiner PJ, Siscovick DS, Steffes MW, Fornage M (2006) Patterns of association between PPARgamma genetic variation and indices of adiposity and insulin action in African-Americans and whites: the CARDIA study. J Mol Med 84:955–965

    Article  PubMed  CAS  Google Scholar 

  27. Meirhaeghe A, Tanck MW, Fajas L, Janot C, Helbecque N, Cottel D, Auwerx J, Amouyel P, Dallongeville J (2005) Study of a new PPARgamma2 promoter polymorphism and haplotype analysis in a French population. Mol Genet Metab 85:140–148

    Article  PubMed  CAS  Google Scholar 

  28. Wolford JK, Yeatts KA, Dhanjal SK, Black MH, Xiang AH, Buchanan TA, Watanabe RM (2005) Sequence variation in PPARG may underlie differential response to troglitazone. Diabetes 54:3319–3325

    Article  PubMed  CAS  Google Scholar 

  29. Muller YL, Bogardus C, Beamer BA, Shuldiner AR, Baier LJ (2003) A functional variant in the peroxisome proliferator-activated receptor gamma2 promoter is associated with predictors of obesity and type 2 diabetes in Pima Indians. Diabetes 52:1864–1871

    Article  PubMed  Google Scholar 

  30. Meirhaeghe A, Cottel D, Amouyel P, Dallongeville J (2005) Association between peroxisome proliferator-activated receptor gamma haplotypes and the metabolic syndrome in French men and women. Diabetes 54:3043–3048

    Article  PubMed  CAS  Google Scholar 

  31. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    Article  PubMed  CAS  Google Scholar 

  32. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2):263–265

    Article  PubMed  CAS  Google Scholar 

  33. Comings DE, MacMurray JP (2000) Molecular heterosis: a review. Mol Genet Metab 71:19–31

    Article  PubMed  CAS  Google Scholar 

  34. Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl MC, Nemesh J, Lane CR, Schaffner SF, Bolk S, Brewer C, Tuomi T, Gaudet D, Hudson TJ, Daly M, Groop L, Lander ES (2000) The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 26:76–80

    Article  PubMed  CAS  Google Scholar 

  35. Deeb SS, Fajas L, Nemoto M, Pihlajamaki J, Mykkanen L, Kuusisto J, Laakso M, Fujimoto W, Auwerx J (1998) A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet 20:284–287

    Article  PubMed  CAS  Google Scholar 

  36. Yamauchi T, Kamon J, Waki H, Murakami K, Motojima K, Komeda K, Ide T, Kubota N, Terauchi Y, Tobe K, Miki H, Tsuchida A, Akanuma Y, Nagai R, Kimura S, Kadowaki T (2001) The mechanisms by which both heterozygous peroxisome proliferator-activated receptor gamma (PPARgamma) deficiency and PPARgamma agonist improve insulin resistance. J Biol Chem 276:41245–41254

    Article  PubMed  CAS  Google Scholar 

  37. Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:197–207

    Article  PubMed  CAS  Google Scholar 

  38. Luo XH, Guo LJ, Xie H, Yuan LQ, Wu XP, Zhou HD, Liao EY (2006) Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblasts through the MAPK signaling pathway. J Bone Miner Res 21:1648–1656

    Article  PubMed  CAS  Google Scholar 

  39. Tavares V, Hirata RD, Rodrigues AC, Monte O, Salles JE, Scallissi N, Speranza AC, Gomes S, Hirata MH (2005) Effect of the peroxisome proliferator-activated receptor-gamma C161T polymorphism on lipid profile in Brazilian patients with Type 2 diabetes mellitus. J Endocrinol Invest 28:129–136

    PubMed  CAS  Google Scholar 

  40. Wan J, Xiong S, Chao S, Xiao J, Ma Y, Wang J, Roy S (2010) PPARgamma gene C161T substitution alters lipid profile in Chinese patients with coronary artery disease and type 2 diabetes mellitus. Cardiovasc Diabetol 9:13

    Article  PubMed  Google Scholar 

  41. Rhee EJ, Oh KW, Lee WY, Kim SY, Oh ES, Baek KH, Kang MI, Kim SW (2005) The effects of C161→T polymorphisms in exon 6 of peroxisome proliferator-activated receptor-gamma gene on bone mineral metabolism and serum osteoprotegerin levels in healthy middle-aged women. Am J Obstet Gynecol 192:1087–1093

    Article  PubMed  CAS  Google Scholar 

  42. Spiteller G (2001) Peroxidation of linoleic acid and its relation to aging and age dependent diseases. Mech Ageing Dev 122:617–657

    Article  PubMed  CAS  Google Scholar 

  43. Hattersley AT, McCarthy MI (2005) What makes a good genetic association study? Lancet 366:1315–1323

    Article  PubMed  Google Scholar 

  44. Bielohuby M, Matsuura M, Herbach N, Kienzle E, Slawik M, Hoeflich A, Bidlingmaier M (2009) Short term exposure to low-carbohydrate/high fat diets induces low bone mineral density and reduces bone formation in rats. J Bone Miner Res 25:275–284

    Article  Google Scholar 

  45. Heikkinen S, Argmann C, Feige JN, Koutnikova H, Champy MF, li-Youcef N, Schadt EE, Laakso M, Auwerx J (2009) The Pro12Ala PPARgamma2 variant determines metabolism at the gene-environment interface. Cell Metab 9:88–98

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Harsløf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harsløf, T., Tofteng, C.L., Husted, L.B. et al. Polymorphisms of the peroxisome proliferator-activated receptor γ (PPARγ) gene are associated with osteoporosis. Osteoporos Int 22, 2655–2666 (2011). https://doi.org/10.1007/s00198-010-1491-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-010-1491-z

Keywords

Navigation