Skip to main content
Log in

Strong effect of SNP rs4988300 of the LRP5 gene on bone phenotype of Caucasian postmenopausal women

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The purpose of this study was to identify relationships between single nucleotide polymorphisms (SNPs) in the genes of the Wnt pathway and bone mineral density (BMD) of postmenopausal women. We chose this pathway due to its importance in bone metabolism that was underlined in several studies. DNA samples of 932 Hungarian postmenopausal women were studied. First, their BMD values at different sites (spine, total hip) were measured, using a Lunar Prodigy DXA scanner. Thereafter, T-score values and the patients’ body mass indices (BMIs) were calculated, while information about the fracture history of the sample population was also collected. We genotyped nine SNPs of the following three genes: LRP5, GPR177, and SP7, using a Sequenom MassARRAY Analyzer 4 instrument. The genomic DNA samples used for genotyping were extracted from the buccal mucosa of the subjects. Statistical analyses were carried out using the SPSS 21 and R package. The results of this analysis showed a significant association between SNP rs4988300 of the LRP5 gene and total hip BMD values. We could not reveal any associations between the markers of GPR177, SP7, and bone phenotypes. We found no effect of these genotypes on fracture risk. We could demonstrate a significant gene–gene interaction between two SNPs of LRP5 (rs4988300 and rs634008, p = 0.009) which was lost after Bonferroni correction. We could firmly demonstrate a significant association between rs4988300 of the LRP5 gene and bone density of the hip on the largest homogeneous postmenopausal study group analyzed to date. Our finding corroborates the relationship between LRP5 genotype and bone phenotype in postmenopausal women, however, the complete mechanism of this relationship requires further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zaidi M (2007) Skeletal remodeling in health and disease. Nat Med 13:791–801

    Article  PubMed  CAS  Google Scholar 

  2. Hsu YH, Kiel DP (2012) Clinical review: genome-wide association studies of skeletal phenotypes: what we have learned and where we are headed. J Clin Endocrinol Metab 97:E1958–E1977

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Paternoster L, Lorentzon M, Vandenput L et al (2010) Genome-wide association meta-analysis of cortical bone mineral density unravels allelic heterogeneity at the RANKL locus and potential pleiotropic effects on bone. PLoS Genet 6:e1001217

    Article  PubMed  PubMed Central  Google Scholar 

  4. Takacs I, Lazary A, Kosa JP et al (2010) Allelic variations of RANKL/OPG signaling system are related to bone mineral density and in vivo gene expression. Eur J Endocrinol 162:423–431

    Article  PubMed  CAS  Google Scholar 

  5. Lazary A, Kosa JP, Tobias B et al (2008) Single nucleotide polymorphisms in new candidate genes are associated with bone mineral density and fracture risk. Eur J Endocrinol 159:187–196

    Article  PubMed  CAS  Google Scholar 

  6. Kumar J, Swanberg M, McGuigan F, Callreus M, Gerdhem P, Akesson K (2011) LRP4 association to bone properties and fracture and interaction with genes in the Wnt- and BMP signaling pathways. Bone 49:343–348

    Article  PubMed  CAS  Google Scholar 

  7. Li X, Grisanti M, Fan W et al (2011) Dickkopf-1 regulates bone formation in young growing rodents and upon traumatic injury. J Bone Miner Res 26:2610–2621

    Article  PubMed  CAS  Google Scholar 

  8. Wend P, Wend K, Krum SA, Miranda-Carboni GA (2012) The role of WNT10B in physiology and disease. Acta Physiol (Oxf) 204:34–51

    Article  CAS  Google Scholar 

  9. Baron R, Kneissel M (2013) WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 19:179–192

    Article  PubMed  CAS  Google Scholar 

  10. Maeda K, Takahashi N, Kobayashi Y (2013) Roles of Wnt signals in bone resorption during physiological and pathological states. J Mol Med (Berl) 91:15–23

    Article  CAS  Google Scholar 

  11. Regard JB, Zhong Z, Williams BO, Yang Y (2012) Wnt signaling in bone development and disease: making stronger bone with Wnts. Cold Spring Harb Perspect Biol 4:a007997

    Article  PubMed  PubMed Central  Google Scholar 

  12. Day TF, Guo X, Garrett-Beal L, Yang Y (2005) Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 8:739–750

    Article  PubMed  CAS  Google Scholar 

  13. Gong Y, Slee RB, Fukai N et al (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107:513–523

    Article  PubMed  CAS  Google Scholar 

  14. He X, Semenov M, Tamai K, Zeng X (2004) LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signaling: arrows point the way. Development 131:1663–1677

    Article  PubMed  CAS  Google Scholar 

  15. Yadav VK, Ryu JH, Suda N et al (2008) Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 135:825–837

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Ichikawa S, Koller DL, Padgett LR, Lai D, Hui SL, Peacock M, Foroud T, Econs MJ (2010) Replication of previous genome-wide association studies of bone mineral density in premenopausal American women. J Bone Miner Res 25:1821–1829

    Article  PubMed  PubMed Central  Google Scholar 

  17. Estrada K, Styrkarsdottir U, Evangelou E et al (2012) Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet 44:491–501

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Bartscherer K, Pelte N, Ingelfinger D, Boutros M (2006) Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell 125:523–533

    Article  PubMed  CAS  Google Scholar 

  19. Maruyama T, Jiang M, Hsu W (2013) Gpr177, a novel locus for bone mineral density and osteoporosis, regulates osteogenesis and chondrogenesis in skeletal development. J Bone Miner Res 28:1150–1159

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Rivadeneira F, Styrkársdottir U, Estrada K et al (2009) Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet 41:1199–1206

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Chen D, Li Y, Zhou Z, Xing Y, Zhong Y, Zou X, Tian W, Zhang C (2012) Synergistic inhibition of Wnt pathway by HIF-1alpha and osteoblast-specific transcription factor osterix (Osx) in osteoblasts. PLoS ONE 7:e52948

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Kobayashi T, Kronenberg H (2005) Minireview: transcriptional regulation in development of bone. Endocrinology 146:1012–1017

    Article  PubMed  CAS  Google Scholar 

  23. Dalle Carbonare L, Valenti MT, Zanatta M, Donatelli L, Lo Cascio V (2009) Circulating mesenchymal stem cells with abnormal osteogenic differentiation in patients with osteoporosis. Arthritis Rheum 60:3356–3365

    Article  PubMed  Google Scholar 

  24. Gonzalez JR, Armengol L, Sole X, Guino E, Mercader JM, Estivill X, Moreno V (2007) SNPassoc: an R package to perform whole genome association studies. Bioinformatics 23:644–645

    PubMed  Google Scholar 

  25. Riancho JA, Olmos JM, Pineda B et al (2011) Wnt receptors, bone mass, and fractures: gene-wide association analysis of LRP5 and LRP6 polymorphisms with replication. Eur J Endocrinol 164:123–131

    Article  PubMed  CAS  Google Scholar 

  26. Tuysuz B, Bursali A, Alp Z, Suyugul N, Laine CM, Makitie O (2012) Osteoporosis-pseudoglioma syndrome: three novel mutations in the LRP5 gene and response to bisphosphonate treatment. Horm Res Paediatr 77:115–120

    Article  PubMed  CAS  Google Scholar 

  27. Laine CM, Chung BD, Susic M et al (2011) Novel mutations affecting LRP5 splicing in patients with osteoporosis-pseudoglioma syndrome (OPPG). Eur J Hum Genet 19:875–881

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Boyden LM, Mao J, Belsky J et al (2002) High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 346:1513–1521

    Article  PubMed  CAS  Google Scholar 

  29. Hill TP, Später D, Taketo MM, Birchmeier W, Hartmann C (2005) Canonical Wnt/β-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell 8:727–738

    Article  PubMed  CAS  Google Scholar 

  30. Hu H, Hilton MJ, Tu X, Yu K, Ornitz DM, Long F (2005) Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development 132:49–60

    Article  PubMed  CAS  Google Scholar 

  31. Xiong DH, Shen H, Zhao LJ et al (2006) Robust and comprehensive analysis of 20 osteoporosis candidate genes by very high-density single-nucleotide polymorphism screen among 405 white nuclear families identified significant association and gene-gene interaction. J Bone Miner Res 21:1678–1695

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Kiel DP, Demissie S, Dupuis J, Lunetta KL, Murabito JM, Karasik D (2007) Genome-wide association with bone mass and geometry in the Framingham Heart Study. BMC Med Genet 8(Suppl 1):S14

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cefalu CA (2004) Is bone mineral density predictive of fracture risk reduction? Curr Med Res Opin 20:341–349

    Article  PubMed  Google Scholar 

  34. Yu HM, Jin Y, Fu J, Hsu W (2010) Expression of Gpr177, a Wnt trafficking regulator, in mouse embryogenesis. Dev Dyn 239:2102–2109

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Jin J, Morse M, Frey C, Petko J, Levenson R (2010) Expression of GPR177 (Wntless/Evi/Sprinter), a highly conserved Wnt-transport protein, in rat tissues, zebrafish embryos, and cultured human cells. Dev Dyn 239:2426–2434

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Fu J, Jiang M, Mirando AJ, Yu HM, Hsu W (2009) Reciprocal regulation of Wnt and Gpr177/mouse Wntless is required for embryonic axis formation. Proc Natl Acad Sci USA 106:18598–18603

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Roshandel D, Thomson W, Pye SR et al (2011) Polymorphisms in genes involved in the NF-kappaB signalling pathway are associated with bone mineral density, geometry and turnover in men. PLoS One 6:e28031

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Chauveau C, Broux O, Delecourt C, Hardouin P, Jeanfils J, Devedjian JC (2008) Gene expression in normotopic and heterotopic human bone: increased level of SP7 mRNA in pathological tissue. Mol Cell Biochem 318:81–87

    Article  PubMed  CAS  Google Scholar 

  39. Mendez JP, Rojano-Mejia D, Coral-Vazquez RM et al (2013) Impact of genetic variants of IL-6, IL6R, LRP5, ESR1 and SP7 genes on bone mineral density in postmenopausal Mexican-Mestizo women with obesity. Gene 528:216–220

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

All authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Horváth.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 13 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horváth, P., Balla, B., Kósa, J.P. et al. Strong effect of SNP rs4988300 of the LRP5 gene on bone phenotype of Caucasian postmenopausal women. J Bone Miner Metab 34, 79–85 (2016). https://doi.org/10.1007/s00774-014-0645-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-014-0645-z

Keywords

Navigation