Osteoporosis International

, Volume 22, Issue 3, pp 771–780 | Cite as

Development and validation of a disease model for postmenopausal osteoporosis

  • A. Gauthier
  • J. A. Kanis
  • M. Martin
  • J. Compston
  • F. Borgström
  • C. Cooper
  • E. McCloskey
  • On behalf of the Committee of Scientific Advisors, International Osteoporosis Foundation
Original Article

Abstract

Summary

This article describes the development of a model for postmenopausal osteoporosis (PMO) based on Swedish data that is easily adaptable to other countries.

Introduction

The aims of the study were to develop and validate a model to describe the current/future burden of PMO in different national settings.

Methods

For validation purposes, the model was developed using Swedish data and provides estimates from 1990. For each year of the study, the “incident cohort” (women experiencing a first osteoporotic fracture) was identified and run through a Markov model using 1-year cycles until 2020. Health states were based on the number of fractures and death. Fracture by site (hip, vertebral, and non-hip non-vertebral) was tracked for each health state. Transition probabilities reflected site-specific risk of death and subsequent fractures. Bone mineral density (BMD) was included as a model output; model inputs included population size and life tables from 1970 to 2020, incidence of fracture, relative risk of subsequent fractures based on prior fracture, relative risk of death following a fracture by site, and BMD by age (mean and standard deviation).

Results

Model predictions averaged across age groups estimated the incidence of hip, vertebral, and other osteoporotic fractures within a 5% margin of error versus published data. In Sweden, the number of osteoporotic fractures is expected to rise by 11.5% between 2009 and 2020, with a shift towards more vertebral fractures and multiple fractures.

Conclusion

The current PMO disease model is easily adaptable to other countries, providing a consistent measure of present and future burden of PMO in different settings.

Keywords

Bone mineral density Epidemiology Fracture Osteoporosis T-score 

Supplementary material

198_2010_1358_MOESM1_ESM.docx (18 kb)
ESM 1Probability of first fracture [12, 13] (DOCX 15 kb)
198_2010_1358_MOESM2_ESM.docx (16 kb)
ESM 2Increased risk* of fracture following a previous fracture [9, 10] (DOCX 16 kb)
198_2010_1358_MOESM3_ESM.docx (16 kb)
ESM 3Relative risk of death following a hip or vertebral fracture [7, 8] (DOCX 15 kb)
198_2010_1358_MOESM4_ESM.docx (15 kb)
ESM 4Mean bone mineral density (BMD) and standard deviation (SD) by age group [18] (DOCX 15 kb)

References

  1. 1.
    Kanis JA, on behalf of the World Organization Scientific Group (2007) Assessment of osteoporosis at the primary health care level. Technical report. World Health Organization Collaborating Centre for Metabolic Bone Diseases. University of Sheffield, UKGoogle Scholar
  2. 2.
    Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17:1726–1733CrossRefPubMedGoogle Scholar
  3. 3.
    World Health Organization (2004) Burden of disease in DALYs by cause, sex and mortality stratum in WHO regions, estimates for 2002, The world health report 2004: changing history. World Health Organization, Geneva, pp 126–131Google Scholar
  4. 4.
    Giannakouris K (2008) Ageing characterises the demographic perspectives of the European societies. Eurostat, Statistics in Focus issue number 72/2008Google Scholar
  5. 5.
    Melton LJ 3rd, Therneau TM, Larson DR (1998) Long-term trends in hip fracture prevalence: the influence of hip fracture incidence and survival. Osteoporos Int 8:68–74CrossRefPubMedGoogle Scholar
  6. 6.
    Parker MJ, Anand JK (1991) What is the true mortality of hip fractures? Public Health 105:443–446CrossRefPubMedGoogle Scholar
  7. 7.
    Kanis JA, Oden A, Johnell O, De Laet C, Jonsson B, Oglesby AK (2003) The components of excess mortality after hip fracture. Bone 32:468–473CrossRefPubMedGoogle Scholar
  8. 8.
    Kanis JA, Oden A, Johnell O, De Laet C, Jonsson B (2004) Excess mortality after hospitalisation for vertebral fracture. Osteoporos Int 15:108–112CrossRefPubMedGoogle Scholar
  9. 9.
    Klotzbuecher CM, Ross PD, Lansman PB, Abbott TA 3rd, Berger M (2000) Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J Bone Miner Res 15:721–739CrossRefPubMedGoogle Scholar
  10. 10.
    Johnell O, Kanis JA, Oden A, Sernbo I, Redlund-Johnell I, Petterson C, De Laet C et al (2004) Fracture risk following an osteoporotic fracture. Osteoporos Int 15:175–179CrossRefPubMedGoogle Scholar
  11. 11.
    Statistics Sweden, Demographic Reports: The future population of Sweden 2006–2050. http://www.scb.se/statistik/_publikationer/BE0401_2006I50_BR_BE51BR0602ENG.pdf. Accessed 17 September 2009
  12. 12.
    Kanis JA, Oden A, Johnell O, Jonsson B, de Laet C, Dawson A (2001) The burden of osteoporotic fractures: a method for setting intervention thresholds. Osteoporos Int 12:417–427CrossRefPubMedGoogle Scholar
  13. 13.
    Kanis JA, Johnell O, Oden A, Sembo I, Redlund-Johnell I, Dawson A, De Laet C et al (2000) Long-term risk of osteoporotic fracture in Malmö. Osteoporos Int 11:669–674CrossRefPubMedGoogle Scholar
  14. 14.
    Johnell O, Kanis JA, Odén A, Sernbo I, Redlund-Johnell I, Petterson C, De Laet C et al (2004) Mortality after osteoporotic fractures. Osteoporos Int 15:38–42CrossRefPubMedGoogle Scholar
  15. 15.
    Barrett JA, Baron JA, Beach ML (2003) Mortality and pulmonary embolism after fracture in the elderly. Osteoporos Int 14:889–894CrossRefPubMedGoogle Scholar
  16. 16.
    Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312:1254–1259PubMedGoogle Scholar
  17. 17.
    Kanis JA, Johnell O, De Laet C, Johansson H, Oden A, Delmas P, Eisman J et al (2004) A meta-analysis of previous fracture and subsequent fracture risk. Bone 35:375–382CrossRefPubMedGoogle Scholar
  18. 18.
    Looker AC, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP, Johnston CC Jr et al (1998) Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int 8:468–489CrossRefPubMedGoogle Scholar
  19. 19.
    Löfman O, Larsson L, Ross I, Toss G, Berglund K (1997) Bone mineral density in normal Swedish women. Bone 20:167–174CrossRefPubMedGoogle Scholar
  20. 20.
    Karlsson MK, Gärdsell P, Johnell O, Nilsson BE, Akesson K, Obrant KJ (1993) Bone mineral normative data in Malmö, Sweden. Comparison with reference data and hip fracture incidence in other ethnic groups. Acta Orthop Scand 64:168–172CrossRefPubMedGoogle Scholar
  21. 21.
    Melton LJ, Crowson CS, O’Fallon WM (1999) Fracture incidence in Olmsted County, Minnesota: comparison of urban and with rural rates and changes in urban rates over time. Osteoporos Int 9:29–37CrossRefPubMedGoogle Scholar
  22. 22.
    Cooper C, Campion G, Melton LJ 3rd (1992) Hip fractures in the elderly: a world-wide projection. Osteoporos Int 2:285–289CrossRefPubMedGoogle Scholar
  23. 23.
    Gullberg B, Johnell O, Kanis JA (1997) World-wide projections for hip fracture. Osteoporos Int 7:407–413CrossRefPubMedGoogle Scholar
  24. 24.
    Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22:465–475CrossRefPubMedGoogle Scholar
  25. 25.
    Schwenkglenks M, Lippuner K, Hauselmann HJ, Szucs TD (2005) A model of osteoporosis impact in Switzerland 2000–2020. Osteoporos Int 16:659–671CrossRefPubMedGoogle Scholar
  26. 26.
    Melton LJ 3rd, Kanis JA, Johnell O (2005) Potential impact of osteoporosis treatment on hip fracture trends. J Bone Miner Res 20:895–897CrossRefPubMedGoogle Scholar
  27. 27.
    Icks A, Haastert B, Wildner M, Becker C, Meyer G (2008) Trend of hip fracture incidence in Germany 1995–2004: a population-based study. Osteoporos Int 19:1139–1145CrossRefPubMedGoogle Scholar
  28. 28.
    Kannus P, Niemi S, Parkkari J, Palvanen M, Vuori I, Järvinen M (2006) Nationwide decline in incidence of hip fracture. J Bone Miner Res 21:1836–1838CrossRefPubMedGoogle Scholar
  29. 29.
    Brauer CA, Coca-Perraillon M, Cutler DM, Rosen AB (2009) Incidence and mortality of hip fractures in the United States. JAMA 302:1573–1579CrossRefPubMedGoogle Scholar
  30. 30.
    Leslie WD, O’Donnell S, Jean S, Lagacé C, Walsh P, Bancej C, Morin S et al (2009) Trends in hip fracture rates in Canada. JAMA 302:883–889CrossRefPubMedGoogle Scholar
  31. 31.
    Gullberg B, Duppe H, Nilsson B, Redlund-Johnell I, Sernbo I, Obrant K, Johnell O (1993) Incidence of hip fractures in Malmö, Sweden (1950–1991). Bone 14(Suppl 1):S23–S29CrossRefPubMedGoogle Scholar
  32. 32.
    Rogmark C, Sernbo I, Johnell O, Nilsson JA (1999) Incidence of hip fractures in Malmö, Sweden, 1992–1995. A trend-break. Acta Orthop Scand 70:19–22CrossRefPubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2010

Authors and Affiliations

  • A. Gauthier
    • 1
    • 2
  • J. A. Kanis
    • 3
  • M. Martin
    • 4
  • J. Compston
    • 5
  • F. Borgström
    • 6
    • 7
  • C. Cooper
    • 8
    • 9
  • E. McCloskey
    • 3
  • On behalf of the Committee of Scientific Advisors, International Osteoporosis Foundation
  1. 1.University of GlasgowGlasgowUK
  2. 2.Amaris Consulting UK LtdLondonUK
  3. 3.University of SheffieldSheffieldUK
  4. 4.i3 InnovusMiddlesexUK
  5. 5.University of Cambridge School of Clinical MedicineCambridgeUK
  6. 6.i3 InnovusStockholmSweden
  7. 7.LIME/MMC, Karolinska InstituteStockholmSweden
  8. 8.University of SouthamptonSouthamptonUK
  9. 9.University of OxfordOxfordUK

Personalised recommendations