Skip to main content

Advertisement

Log in

Standardised quantitative morphometry: a modified approach for quantitative identification of prevalent vertebral deformities

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Our approach for the quantitative identification of vertebral deformity (standardised quantitative morphometry, SQM) reduces problems associated with obtaining reference intervals from populations with high prevalence of fracture. In women with osteoporosis, agreement with radiological diagnosis (surrogate gold standard) was better for SQM than QM using the Eastell-Melton method.

Introduction

Use of reference intervals for quantitative vertebral morphometry (QM) derived by statistical trimming can be problematic in reference populations with high prevalence of deformity. We have developed a modified approach known as standardised quantitative morphometry (SQM), whereby vertebral height is standardised to eliminate variation between individuals. The aims of this study were to compare SQM to QM (Eastell-Melton method) for identification of prevalent vertebral deformities, using qualitative radiological diagnosis as the gold standard, and automate the process.

Methods

Our study populations were a clinic-based sample of 80 women ages 48 to 87 years with a high prevalence of vertebral deformity and a general practice (GP)-based sample of 372 women ages 50 to 85 years. Agreement with the gold standard was tested for SQM and QM.

Results

Agreement was better for SQM (κ = 0.80) than for QM (κ = 0.14) in the clinic sample using clinic-based reference data. The agreement was improved for QM using the GP-based reference data, κ = 0.63. In the GP population, agreement was good for both SQM and QM (κ = 0.59 and 0.54 respectively).

Conclusions

In our population with a high prevalence of vertebral fracture, SQM performs better than the Eastell-Melton method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Barnett E, Nordin BEC (1960) The radiologic diagnosis of osteoporosis: a new approach. Clin Radiol 11:166–174

    Article  PubMed  CAS  Google Scholar 

  2. Reshef A, Schwartz A, Ben-Menachem Y et al (1971) Radiologic osteoporosis: Correlation with dietary and biochemical findings. J Am Geriatr Soc 19:391–402

    PubMed  CAS  Google Scholar 

  3. Jensen KK, Tougaard L (1981) A simple x-ray method for monitoring progress of osteoporosis. Lancet 2:19–20

    Article  PubMed  CAS  Google Scholar 

  4. Minne HW, Leidig G, Wuster C et al (1988) A newly developed spine deformity index (SDI) to quantitate vertebral crush fractures in patients with osteoporosis. Bone Miner 3:335–349

    PubMed  CAS  Google Scholar 

  5. Hedlund LR, Gallagher JC (1988) Vertebral morphometry in diagnosis of spinal fractures. Bone Miner 5:59–67

    Article  PubMed  CAS  Google Scholar 

  6. Melton LJ III, Kan SH, Frye MA et al (1989) Epidemiology of vertebral fractures in women. Am J Epidemiol 129:1000–1011

    PubMed  Google Scholar 

  7. Davies KM, Recker RR, Heaney RP (1989) Normal vertebral dimensions and normal variation in serial measurements of vertebrae. J Bone Miner Res 4:341–349

    PubMed  CAS  Google Scholar 

  8. Eastell R, Cedel SL, Wahner HW et al (1991) Classification of vertebral fractures. J Bone Miner Res 6:207–215

    PubMed  CAS  Google Scholar 

  9. Sauer P, Leidig G, Minne H et al (1991) Spine deformity index (SDI) versus other objective procedures of vertebral fracture identification in patients with osteoporosis: a comparative study. J Bone Miner Res 6:227–238

    PubMed  CAS  Google Scholar 

  10. McCloskey EV, Spector TD, Eyres KS et al (1993) The assessment of vertebral deformity. A method for use in population studies and clinical trials. Osteoporos Int 3:138–147

    Article  PubMed  CAS  Google Scholar 

  11. Hurxthal LM, Vose GP, Dotter WE (1969) Densitometric and visual observations of spinal radiographs. Geriatrics 24:93–106

    PubMed  CAS  Google Scholar 

  12. Genant HK, Jergas M, Palermo L et al (1996) Comparison of semiquantitative visual and quantitative morphometric assessment of prevalent and incident vertebral fractures in osteoporosis. The Study of Osteoporotic Fractures Research Group. J Bone Miner Res 11:984–996

    PubMed  CAS  Google Scholar 

  13. Kanis JA, McCloskey EV, Khan S et al (1993) What is a vertebral fracture? In: Christiansen C, Riis B (eds) Proceedings of the Fourth International Symposium on Osteoporosis and Consensus Development Conference. Handelstrykkeriet Aalborg ApS, Aalborg, pp 26–28

    Google Scholar 

  14. Leidig G, Storm T, Genant HK et al (1990) Comparison of two methods to assess vertebral fractures. In: Christiansen C, Overgaard K (eds) Osteoporosis Copenhagen: Osteopress ApS, pp 626–628, 1990

  15. Wu CY, Li J, Jergas M et al (1995) Comparison of semiquantitative and quantitative techniques for the assessment of prevalent and incident vertebral fractures. Osteoporos Int 5:354–370

    Article  PubMed  CAS  Google Scholar 

  16. Pak CYC, Ho A, Poindexter J et al (1996) Quantitation of incident spinal fractures: comparison of visual detection with quantitative morphometry. Bone 18:349–353

    Article  PubMed  CAS  Google Scholar 

  17. Ross PD, Davis JW, Epstein RS et al (1992) Ability of vertebral dimensions from a single radiograph to identify fractures. Calcif Tissue Int 51:95–99

    Article  PubMed  CAS  Google Scholar 

  18. Davies KM, Recker RR, Heaney RP (1993) Revisable criteria for vertebral deformity. Osteoporos Int 3:265–270

    Article  PubMed  CAS  Google Scholar 

  19. Hedlund LR, Gallagher JC, Meeger C et al (1989) Change in vertebral shape in spinal osteoporosis. Calcif Tissue Int 44:168–172

    Article  PubMed  CAS  Google Scholar 

  20. Adami S, Gatti D, Rossini M et al (1992) The radiological assessment of vertebral osteoporosis. Bone 13:S33–S36

    Article  PubMed  Google Scholar 

  21. Banna M (1985) Clinical radiology of the spine and spinal cord. Aspen Systems Corporation, Maryland, p 388

    Google Scholar 

  22. Leidig-Bruckner G, Limberg B, Felsenberg D et al (2000) Sex difference in the validity of vertebral deformities as an index of prevalent vertebral osteoporotic fractures: a population survey of older men and women. Osteoporosis Int 11(2):102–119

    Article  CAS  Google Scholar 

  23. Melton LJ, Lane AW, Cooper C et al (1993) Prevalence and incidence of vertebral deformities. Osteoporos Int 3:113–119

    Article  PubMed  Google Scholar 

  24. Black DM, Cummings SR, Stone K et al (1991) A new approach to defining normal vertebral dimensions. J Bone Miner Res 6:883–892

    PubMed  CAS  Google Scholar 

  25. Black DM, Palermo L, Nevitt MC et al (1995) Comparison of methods for defining prevalent vertebral deformities: the study of osteoporotic fractures. J Bone Miner Res 10:890–902

    PubMed  CAS  Google Scholar 

  26. Jiang G, Barrington NA, Eastell R (1999) Endplate angle approach for the quantitative identification of minor endplate vertebral deformities. J Bone Miner Res 14(Suppl 1):S496

    Google Scholar 

  27. Osman AA, Bassiouni H, Koutri R et al (1994) Aging of the thoracic spine: distinction between wedging in osteoarthritis and fracture in osteoporosis- a cross-sectional and longitudinal study. Bone 15(4):437–442

    Article  Google Scholar 

  28. Zebaze RM, Maalouf G, Wehbe J et al (2004) The varying distribution of intra- and inter-vertebral height ratios determines the prevalence of vertebral fractures. Bone 35(2):348–356

    Article  PubMed  Google Scholar 

  29. Cummings SR et al (1995) National Osteoporosis Foundation Working Group on Vertebral Fractures. Report: assessing vertebral fractures. J Bone Miner Res 10:518–523

    Google Scholar 

  30. Genant K, Wu CY, Kuijk CV et al (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148

    PubMed  CAS  Google Scholar 

  31. Melton LJ 3rd, Wenger DE, Atkinson EJ et al (2006) Influence of baseline deformity definition on subsequent vertebral fracture risk in postmenopausal women. Osteoporos Int 17(7):978–985

    Article  PubMed  Google Scholar 

  32. O’Neill TW, Felsenberg D, Varlow J (1996) The prevalence of vertebral deformity in European men and women: the European Vertebral Osteoporosis Study. J Bone Miner Res 11:1010–1018

    Article  PubMed  CAS  Google Scholar 

  33. Peel NFA, Johnson A, Smith TWD et al (1993) Impact of anomalous vertebral segmentation on measurements of bone mineral density. J Bone Miner Res 8:719–723

    PubMed  CAS  Google Scholar 

  34. Ferrar L, Jiang G, Barrington NA et al (2000) Identification of vertebral deformities in women: comparison of radiological assessment and quantitative morphometry using morphometric radiography and morphometric x-ray absorptiometry. J Bone Miner Res 15(3):575–585

    Article  PubMed  CAS  Google Scholar 

  35. Altman DG (1991) Practical statistics for medical research. Chapman and Hall, London, UK

    Google Scholar 

  36. Jiang G, Eastell R, Barrington NA et al (2004) Comparison of methods for the visual identification of prevalent vertebral fracture in osteoporosis. Osteoporos Int 15(11):887–896, Nov

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Yungui Zheng for his help in writing the software for use in Matlab. We acknowledge the doctors and nurses in the Metabolic Bone Unit, Northern General Hospital, Sheffield, in the recruiting of patients for the clinic-based sample, and the assistance of Dr. Diana Greenfield in the recruiting of patients for the GP-based sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Eastell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, G., Ferrar, L., Barrington, N.A. et al. Standardised quantitative morphometry: a modified approach for quantitative identification of prevalent vertebral deformities. Osteoporos Int 18, 1411–1419 (2007). https://doi.org/10.1007/s00198-007-0376-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-007-0376-2

Keywords

Navigation