Skip to main content
Log in

Influence of baseline deformity definition on subsequent vertebral fracture risk in postmenopausal women

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Introduction

Approaches for recognizing vertebral fractures remain controversial.

Methods

An age-stratified population sample of 512 postmenopausal women was followed with serial radiographs for up to 12 years (4455 person-years).

Results

112 women experienced a new vertebral fracture (20% reduction in any vertebral height from baseline) within this study period, for an annual age-adjusted (to US white women ≥50 years of age in 2000) incidence of 23 per 1000. Depending on the morphometric definition used, the prevalence of vertebral deformities at baseline ranged from 3 to 90%. A recent method to standardize vertebral heights produced the best agreement with a qualitative clinical reading of the films [kappa (κ), 0.53]. Almost all of the different baseline definitions predicted future vertebral fractures, but most of the predictive power was attributable to the severe (e.g., 4 SD) deformities included within more generous (e.g., 3 SD) classifications. Whereas the generous definitions were more sensitive, and the restrictive ones more specific, their overall abilities to predict a new vertebral fracture were roughly comparable as evaluated by the c-index (analogous to the area under an ROC curve).

Conclusion

This result suggests that the choice of a morphometry definition depends on the particular application and, in particular, on whether it is more important to maximize sensitivity or specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cummings SR, Melton LJ III (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767

    Article  PubMed  Google Scholar 

  2. Anonymous (1995) Assessing vertebral fractures. National Osteoporosis Foundation Working Group on Vertebral Fractures. J Bone Miner Res 10:518–523

    Google Scholar 

  3. Kanis JA, McCloskey EV, Kahn S, Nakatsuka K, Sirtori P (1993) What is a vertebral fracture? In: Christiansen C, Riis B (eds) Proc 4th Int Symp Osteoporos Consensus Dev Conf. Aalborg, Handelstrykkeriet Aalborg, pp 26–28

  4. McCloskey EV, Spector TD, Eyres KS, Fern ED, O’Rourke N, Vasikaran S, Kanis JA (1993) The assessment of vertebral deformity: a method for use in population studies and clinical trials. Osteoporos Int 3:138–147

    Article  PubMed  CAS  Google Scholar 

  5. Melton LJ III, Egan KS, O’Fallon WM, Riggs BL (1998) Influence of fracture criteria on the outcome of a randomized trial of therapy. Osteoporos Int 8:184–191

    Article  PubMed  Google Scholar 

  6. Black DM, Palermo L, Nevitt MC, Genant HK, Christensen L, Cummings SR (1999) Defining incident vertebral deformity: a prospective comparison of several approaches. The study of Osteoporotic Fractures Research Group. J Bone Miner Res 14:90–101

    Article  PubMed  CAS  Google Scholar 

  7. Ferrar L, Jiang G, Adams J, Eastell R (2005) Identification of vertebral fractures: an update. Osteoporos Int 16:717–728

    Article  PubMed  CAS  Google Scholar 

  8. Genant HK, Jergas M (2003) Assessment of prevalent and incident vertebral fractures in osteoporosis research. Osteoporos Int 14[Supplement 3]:S43–S55

    PubMed  Google Scholar 

  9. Ettinger B, Black DM, Nevitt MC, Rundle AC, Cauley JA, Cummings SR, Genant HK (1992) Contribution of vertebral deformities to chronic back pain and disability. The study of Osteoporotic Factures Research Group. J Bone Miner Res 7:449–456

    PubMed  CAS  Google Scholar 

  10. Burger H, Van Daele PL, Grashuis K, Hofman A, Grobbee DE, Schutte HE, Birkenhager JC, Pols HA (1997) Vertebral deformities and functional impairment in men and women. J Bone Miner Res 12:152–157

    Article  PubMed  CAS  Google Scholar 

  11. Ross PD, Yhee YK, He Y-F, Davis JW, Kamimoto C, Epstein RS, Wasnich RD (1993) A new method for vertebral fracture diagnosis. J Bone Miner Res 8:167–174

    PubMed  CAS  Google Scholar 

  12. Jiang G, Eastell R, Barrington NA, Ferrar L (2004) Comparison of methods for the visual identification of prevalent vertebral fracture in osteoporosis. Osteoporos Int 15:887–896

    Article  PubMed  CAS  Google Scholar 

  13. Klotzbuecher CM, Ross PD, Landsman PB, Abbott TA III, Berger M (2000) Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J Bone Miner Res 15:721–739

    Article  PubMed  CAS  Google Scholar 

  14. Lindsay R, Silverman SL, Cooper C, Hanley DA, Barton I, Broy SB, Licata A, Benhamou L, Geusens P, Flowers K, Stracke H, Seeman E (2001) Risk of new vertebral fracture in the year following a fracture. JAMA 285:320–323

    Article  PubMed  CAS  Google Scholar 

  15. Melton LJ III (1996) History of the Rochester Epidemiology Project. Mayo Clin Proc 71:266–274

    Article  PubMed  Google Scholar 

  16. Melton LJ III, Kan SH, Frye MA, Wahner HW, O’Fallon WM, Riggs BL (1989) Epidemiology of vertebral fractures in women. Am J Epidemiol 129:1000–1011

    PubMed  Google Scholar 

  17. Melton LJ III, Lane AW, Cooper C, Eastell R, O’Fallon WM, Riggs BL (1993) Prevalence and incidence of vertebral deformities. Osteoporos Int 3:113–119

    Article  PubMed  Google Scholar 

  18. Melton LJ III, Khosla S, Atkinson EJ, O’Fallon WM, Riggs BL (1997) Relationship of bone turnover to bone density and fractures. J Bone Miner Res 12:1083–1091

    Article  PubMed  Google Scholar 

  19. Eastell R, Cedel SL, Wahner HW, Riggs BL, Melton LJ III (1991) Classification of vertebral fractures. J Bone Miner Res 6:207–215

    PubMed  CAS  Google Scholar 

  20. Black DM, Cummings SR, Stone K, Hudes E, Palermo L, Steiger P (1991) A new approach to defining normal vertebral dimensions. J Bone Miner Res 6:883–892

    PubMed  CAS  Google Scholar 

  21. Jiang G (2002) Approaches to the identification of vertebral fractures. PhD thesis, University of Sheffield, Sheffield, UK pp 99–100

  22. Black DM, Palermo L, Nevitt MC, Genant HK, Epstein R, San Valentin R, Cummings SR (1995) Comparison of methods for defining prevalent vertebral deformities: The study of Osteoporotic Fractures. J Bone Miner Res 10:890–902

    PubMed  CAS  Google Scholar 

  23. Harrell FE Jr, Lee KL, Mark DB (1996) Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 15:361–387

    Article  PubMed  Google Scholar 

  24. Deyo RA, McNiesh LM, Cone RO III (1985) Observer variability in the interpretation of lumbar spine radiographs. Arthritis Rheum 28:1066–1070

    Article  PubMed  CAS  Google Scholar 

  25. Davies KM, Recker RR, Heaney RP (1989) Normal vertebral dimensions and normal variation in serial measurements of vertebrae. J Bone Miner Res 4:341–349

    PubMed  CAS  Google Scholar 

  26. Espeland A, Korsbrekke K, Albrektsen G, Larsen JL (1998) Observer variation in plain radiography of the lumbosacral spine. Br J Radiol 71:366–375

    PubMed  CAS  Google Scholar 

  27. Gehlbach SH, Bigelow C, Heimisdottir M, May S, Walker M, Kirkwood JR (2000) Recognition of vertebral fracture in a clinical setting. Osteoporos Int 11:577–582

    Article  PubMed  CAS  Google Scholar 

  28. Delmas PD, van de Langerijt L, Watts NB, Eastell R, Genant H, Grauer A, Cahall DL, for the IMPACT Study Group (2005) Underdiagnosis of vertebral fractures is a worldwide problem: the IMPACT Study. J Bone Miner Res 20:557–563

    Article  PubMed  Google Scholar 

  29. Greenspan SL, von Stetten E, Emond SK, Jones L, Parker RA (2001) Instant vertebral assessment: a noninvasive dual X-ray absorptiometry technique to avoid misclassification and clinical mismanagement of osteoporosis. J Clin Densitom 4:373–380

    Article  PubMed  CAS  Google Scholar 

  30. Vokes TJ, Dixon LB, Favus MJ (2003) Clinical utility of dual-energy vertebral assessment (DVA). Osteoporos Int 14:871–878

    Article  PubMed  Google Scholar 

  31. Genant HK, Li J, Wu CY, Shepherd JA (2000) Vertebral fractures in osteoporosis: a new method for clinical assessment. J Clin Densitom 3:281–290

    Article  PubMed  CAS  Google Scholar 

  32. Ferrar L, Jiang G, Eastell R, Peel NFA (2003) Visual identification of vertebral fractures in osteoporosis using morphometric X-ray absorptiometry. J Bone Miner Res 18:933–938

    Article  PubMed  CAS  Google Scholar 

  33. Smith-Bindman R, Cummings SR, Steiger P, Genant HK (1991) A comparison of morphometric definitions of vertebral fracture. J Bone Miner Res 6:25–34

    PubMed  CAS  Google Scholar 

  34. Nicholson PHF, Haddaway MJ, Davie MWJ, Evans SF (1993) Vertebral deformity, bone mineral density, back pain and height loss in unscreened women over 50 years. Osteoporos Int 3:300–307

    Article  PubMed  CAS  Google Scholar 

  35. Matthis C, Weber U, O’Neill TW, Raspe H (1998) Health impact associated with vertebral deformities: results from the European Vertebral Osteoporosis Study (EVOS). Osteoporos Int 8:364–372

    Article  PubMed  CAS  Google Scholar 

  36. Jones G, White C, Nguyen T, Sambrook PN, Kelly PJ, Eisman JA (1996) Prevalent vertebral deformities: relationship to bone mineral density and spinal osteophytosis in elderly men and women. Osteoporos Int 6:233–239

    Article  PubMed  CAS  Google Scholar 

  37. Leidig-Bruckner G, Limberg B, Felsenberg D, Bruckner T, Holder S, Kather A, Miksch J, Wüster C, Ziegler R, Scheidt-Nave C (2000) Sex difference in the validity of vertebral deformities as an index of prevalent vertebral osteoporotic fractures: a population survey of older men and women. Osteoporos Int 11:102–119

    Article  PubMed  CAS  Google Scholar 

  38. Melton LJ III, Atkinson EJ, Khosla S, O’Fallon WM, Riggs BL (1999) Secondary osteoporosis and the risk of vertebral deformities in women. Bone 24:49–55

    Article  PubMed  Google Scholar 

  39. Li J, Wu CY, Jergas M, Genant HK (1995) Diagnosing prevalent vertebral fractures: a comparison between quantitative morphometry and a standardized visual (semiquantitative) approach. In: Genant HK, Jergas M, van Kuijk C (eds) Vertebral fracture in osteoporosis. Radiology Research and Education Foundation, San Francisco, pp 271–279

    Google Scholar 

  40. Jackson SA, Tenenhouse A, Robertson L (2000) Vertebral fracture definition from population-based data: preliminary results from the Canadian Multicenter Osteoporosis Study (CaMos). Osteoporos Int 11:680–687

    Article  PubMed  CAS  Google Scholar 

  41. U.S. Department of Health and Human Services (2004) Chapter 4. The frequency of bone disease. In: Bone Health and Osteoporosis. A report of the surgeon general. U.S. Department of Health and Human Services, Rockville, Md., pp 68–87

  42. Cooper C, Atkinson EJ, O’Fallon WM, Melton LJ III (1992) Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985–1989. J Bone Miner Res 7:221–227

    PubMed  CAS  Google Scholar 

  43. Fink HA, Milavetz DL, Palermo L, Nevitt MC, Cauley JA, Genant HK, Black DM, Ensrud K, for the Fracture Intervention Trial Research Group (2005) What proportion of incident radiographic vertebral deformities is clinically diagnosed and vice versa? J Bone Miner Res 20:1216–1222

    Article  PubMed  Google Scholar 

  44. Melton LJ III, Kallmes DF (in press) Epidemiology of vertebral fractures: implication for vertebroplasty. Acad Radiol

  45. Nelson DA, Kleerekoper M, Peterson EL (1994) Reversal of vertebral deformities in osteoporosis: measurement error or “rebound”? J Bone Miner Res 9:977–982

    Article  PubMed  CAS  Google Scholar 

  46. McKiernan F, Jensen R, Faciszewski T (2003) The dynamic mobility of vertebral compression fractures. J Bone Miner Res 18:24–29

    Article  PubMed  Google Scholar 

  47. Lunt M, Gowin W, Johnell O, Armbrecht G, Felsenberg D, Reeve J, on behalf of the EPOS Study Group (2001) A statistical method to minimize magnification errors in serial vertebral radiographs. Osteoporos Int 12:909–913

    Article  PubMed  CAS  Google Scholar 

  48. Lyritis GP, Mayasis, B, Tsakalakos N, Lambropoulos A, Gazi S, Karachalios T, Tsekoura M, Yiatzides A (1989) The natural history of the osteoporotic vertebral fracture. Clin Rheumatol 8[Supplement 2]:66–69

    Article  PubMed  Google Scholar 

  49. Ross PD, Davis JW, Epstein RS, Wasnich RD (1992) Ability of vertebral dimensions from a single radiograph to identify fractures. Calcif Tissue Int 51:95–99

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported in part by grants AR-27065 and AR-30582 from the National Institutes of Health, U.S. Public Health Service. Digitization of the radiographs was partly supported by a grant from Merck, Sharp and Dohme Research Laboratories. The authors would like to thank Diana Hansen and Margaret Holets for digitizing the radiographs and Mary Roberts for help in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. J. Melton III.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melton, L.J., Wenger, D.E., Atkinson, E.J. et al. Influence of baseline deformity definition on subsequent vertebral fracture risk in postmenopausal women. Osteoporos Int 17, 978–985 (2006). https://doi.org/10.1007/s00198-006-0106-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-006-0106-1

Keywords

Navigation