Skip to main content

Advertisement

Log in

The role of collagen in bone strength

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Bone is a complex tissue of which the principal function is to resist mechanical forces and fractures. Bone strength depends not only on the quantity of bone tissue but also on the quality, which is characterized by the geometry and the shape of bones, the microarchitecture of the trabecular bones, the turnover, the mineral, and the collagen. Different determinants of bone quality are interrelated, especially the mineral and collagen, and analysis of their specific roles in bone strength is difficult. This review describes the interactions of type I collagen with the mineral and the contribution of the orientations of the collagen fibers when the bone is submitted to mechanical forces. Different processes of maturation of collagen occur in bone, which can result either from enzymatic or nonenzymatic processes. The enzymatic process involves activation of lysyl oxidase, which leads to the formation of immature and mature crosslinks that stabilize the collagen fibrils. Two type of nonenzymatic process are described in type I collagen: the formation of advanced glycation end products due to the accumulation of reducible sugars in bone tissue, and the process of racemization and isomerization in the telopeptide of the collagen. These modifications of collagen are age-related and may impair the mechanical properties of bone. To illustrate the role of the crosslinking process of collagen in bone strength, clinical disorders associated with bone collagen abnormalities and bone fragility, such as osteogenesis imperfecta and osteoporosis, are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Van der Rest M, Garrone R (1991) Collagen family proteins. FASEB J 5:2814–2823

    PubMed  Google Scholar 

  2. Brodsky B, Shah NK (1995) The triple helix motif in proteins. FASEB J 9:1537–1546

    PubMed  CAS  Google Scholar 

  3. Myllyharju J, Kivirikko KI (2004) Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet 20:33–43

    Article  PubMed  CAS  Google Scholar 

  4. Dominguez LJ, Barbagallo M, Moro L (2005) Collagen overglycosylation: a biochemical feature that may contribute to bone quality. Biochem Biophys Res Commun 330:1–4

    PubMed  CAS  Google Scholar 

  5. Kuznetsova N and Leikin S (1999) Does the triple helical domain of type I collagen encode molecular recognition and fiber assembly while telopeptides serve as catalytic domains? Effect of proteolytic cleavage on fibrillogenesis and on collagen-collagen interaction in fibers. J Biol Chem 274:36083–36088

    PubMed  CAS  Google Scholar 

  6. Lamande SR, Bateman JF (1999) Procollagen folding and assembly: the role of endoplasmic reticulum enzymes and molecular chaperones. Semin Cell Dev Biol 10:455–464

    PubMed  CAS  Google Scholar 

  7. Hendershot LM, Bulleid NJ (2000) Protein-specific chaperones: the role of HSP47 begins to gel. Curr Biol 10:912–915

    Article  Google Scholar 

  8. Koivu J 1987 Identification of disulphides bonds in carboxy-terminal propeptides of human type I procollagen. FEBS Lett 212:229–232

    Google Scholar 

  9. Bulleid NJ, Dalley JA, Lees JF 1997 The C-propeptide domain of procollagen can be replaced with a transmembrane domain without affecting trimer formation or collagen triple helix folding during biosynthesis. EMBO J 16:6694–6701

    Google Scholar 

  10. Bachinger HP (1987) The influence of peptidyl-prolyl cis-trans isomerase on the in vitro folding of type III collagen. J Biol Chem 262:17144–17148

    PubMed  CAS  Google Scholar 

  11. Galat A, Metcalfe SM (1995) Peptidylproline cis/trans isomerases. Prog Biophys Mol Biol 63:67–118

    PubMed  CAS  Google Scholar 

  12. Kivirikko KI, Myllyharju J (1998) Prolyl 4-hydroxylases and their protein disulfide isomerase subunit. Matrix Biol 16:357–368

    PubMed  CAS  Google Scholar 

  13. Myllyharju J (2003) Prolyl 4-hydroxylases, the key enzymes of collagen biosynthesis. Matrix Biol 22:15–24

    PubMed  CAS  Google Scholar 

  14. Nagata K (1998) Expression and function of heat shock protein 47: a collagen-specific molecular chaperone in the endoplasmic reticulum. Matrix Biol 16:379–386

    PubMed  CAS  Google Scholar 

  15. Nagata K (2003) HSP47 as a collagen-specific molecular chaperone: function and expression in normal mouse development. Semin Cell Dev Biol 14:275–14282

    PubMed  CAS  Google Scholar 

  16. Engel J, Prockop DJ (1991) The zipper-like folding of collagen triple helices and the effects of mutations that disrupt the zipper. Annu Rev Biophys Biophys Chem 20:137–152

    PubMed  CAS  Google Scholar 

  17. Niyibizi C, Eyre DR (1994) Structural characteristics of cross-linking sites in type V collagen of bone chain specificities and heterotypic links to type I collagen. Eur J Biochem 224:943–950

    Article  PubMed  CAS  Google Scholar 

  18. Niyibizi C, Eyre DR (1989) Bone type V collagen: chain composition and location of a trypsin cleavage site. Connect Tissue Res 20:247–250

    PubMed  CAS  Google Scholar 

  19. Baum J and Brodsky B (1999) Folding of peptide models of collagen and misfolding in disease. Curr Opin Struct Biol 9:122–128

    Article  PubMed  CAS  Google Scholar 

  20. Koivu J, Myllyla R, Helaakoski T, Pihlajaniemi T, Tasanen K, Kivirikko KI (1987) A single polypeptide acts both as the beta subunit of prolyl 4-hydroxylase and as a protein disulfide-isomerase. J Biol Chem 262:6447–9

    PubMed  CAS  Google Scholar 

  21. John DC, Grant ME, Bulleid NJ (1993) Cell-free synthesis and assembly of prolyl 4-hydroxylase: the role of the beta-subunit (PDI) in preventing misfolding and aggregation of the alpha-subunit. EMBO J 12:1587–1595

    PubMed  CAS  Google Scholar 

  22. Privalov PL (1982) Stability of proteins. Proteins which do not present a single cooperative system. Adv Protein Chem 35:1–104

    PubMed  CAS  Google Scholar 

  23. Bella J, Brodsky B, Berman HM (1995) Hydration structure of a collagen peptide. Structure 3:893–906

    Article  PubMed  CAS  Google Scholar 

  24. Vranka JA, Sakai LY, Bachinger HP (2004) Prolyl 3-hydroxylase 1, enzyme characterization and identification of a novel family of enzymes. J Biol Chem. 279:23615–21

    Google Scholar 

  25. Valtavaara M, Szpirer C, Szpirer J, Myllyla R (1998) Primary structure, tissue distribution, and chromosomal localization of a novel isoform of lysyl hydroxylase (lysyl hydroxylase 3). J Biol Chem 273:12881–12886

    Article  PubMed  CAS  Google Scholar 

  26. Wang C, Luosujarvi H, Heikkinen J, Risteli M, Uitto L, Myllyla R (2002) The third activity for lysyl hydroxylase 3: galactosylation of hydroxylysyl residues in collagens in vitro. Matrix Biol 21:559–566

    Article  PubMed  CAS  Google Scholar 

  27. Passoja K, Rautavuoma K, Ala-Kokko L, Kosonen T, Kivirikko KI (1998) Cloning and characterization of a third lysyl hydroxylase isoform. Proc Natl Acad Sci USA 95:10482–10486

    PubMed  CAS  Google Scholar 

  28. Mercer DK, Nicol PF, Kimbembe C, Robins SP (2003) Identification, expression and tissue distribution of three rat lysyl hydroxylase isoforms. Biochem Biophys Res Commun 307:803–809

    Article  PubMed  CAS  Google Scholar 

  29. Bank RA, Robins SP, Wijmenga C, Breslau-Siderius LJ, Bardoel AF, van der Sluijs HA, Pruijs HE, TeKoppele JM (1999) Defective collagen cross-linking in bone, but not in ligament or cartilage, in Bruck syndrome: indication for a bone specific telopeptide lysyl hydroxylase on chromosome 17. Proc Natl Acad Sci USA 96:1054–1058

    PubMed  CAS  Google Scholar 

  30. Ha-Vinh R, Alanay Y, Bank RA, Campos-Xavier AB, Zankl A, Superti-Furga A, Bonafe L (2004) Phenotypic and molecular characterization of Bruck syndrome (osteogenesis imperfecta with contractures of the large joints) caused by a recessive mutation in PLOD2. Am J Med Genet A 131A:115–120

    Article  Google Scholar 

  31. Bailey AJ, Wotton SF, Sims TJ, Thompson PW (1992) Post translational modifications in the collagen of human osteoporotic femoral head. Biochem Biophys Res Commun 185:801–805

    Article  PubMed  CAS  Google Scholar 

  32. Harwood R, Grant ME, Jackson DS (1974) Collagen biosynthesis. Characterization of subcellular fractions from embyonic chick fibroblasts and the intracellular localization of protocollagen prolyl and protocollagen lysyl hydroxylases. Biochem J 144:123–130

    PubMed  CAS  Google Scholar 

  33. Harwood R, Grant ME, Jackson DS (1975) Studies on the glycosylation of hydroxylysine residues during collagen biosynthesis and the subcellular localization of collagen galactosyltransferase and collagen glucosyltransferase in tendon and cartilage cells. Biochem J 152:291–302

    PubMed  CAS  Google Scholar 

  34. Gineyts E, Garnero P, Delmas PD (2001) Urinary excretion of glucosyl-galactosyl pyridinoline: a specific biochemical marker of synovium degradation. Rheumatology (Oxford) 40:315–323

    Google Scholar 

  35. Segrest JP, CunninghamLW (1970) Variations in human urinary O-hydroxylysyl glycoside levels and their relationship to collagen metabolism. J Clin Invest 49:1497–1509

    Article  PubMed  CAS  Google Scholar 

  36. Pinnell SR, Fox R, Krane SM (1971) Human collagens: differences in glycosylated hydroxylysines in skin and bone. Biochim Biophys Acta 229:119–122

    PubMed  CAS  Google Scholar 

  37. Smith-Mungo L, Kagan HM (1998) Lysyl oxidase: properties, regulation and multiple functions in biology. Matrix Biol 16:387–398

    Article  PubMed  CAS  Google Scholar 

  38. Maki JM, Tikkanen H, Kivirikko KI (2001) Cloning and characterization of the fifth human lysyl oxidase enzyme: the third member of the lysyl oxidase related subfamily with four scavenger repector cystein-rich domains. Matrix Biol 20:493–496

    Article  PubMed  CAS  Google Scholar 

  39. Csiszar K (2001) Lysyl oxidases: a novel multifunctional amine oxidase family. Prog Nucleic Acid Res Mol Biol 70:1–32

    PubMed  CAS  Google Scholar 

  40. Atsawasuwan P, Mochida Y, Parisuthiman D, Yamauchi M (2005) Expression of lysyl oxidase isoforms in MC3T3-E1 osteoblastic cells. Biochem Biophys Res Commun 327:1042–1046

    Article  PubMed  CAS  Google Scholar 

  41. Wang SX, Mure M, Medzihradszky KF, Burlingame AL, Brown DE, Dooley DM, Smith AJ, Kagan HM, Klinman JP (1996) A crosslinked cofactor in lysyl oxidase: redox function for amino acid side chains Science 273:1078–1084

  42. Robins SP, Shimokomaki M, Bailey AJ (1973) The chemistry of the collagen crosslinks. Age-related changes in the reducible components of intact bovine collagen fibres. Biochem J 131:771–780

    PubMed  CAS  Google Scholar 

  43. Eyre DR, Paz MA, Gallop PM (1984) Cross-linking in collagen and elastin. Annu. Rev Biochem 53:717–748

    Article  CAS  Google Scholar 

  44. Eyre DR, Dickson IR, Van Ness K (1988) Collagen cross-linking in human bone and articular cartilage. Age-related changes in the content of mature hydroxypyridinium residues. Biochem J 252:495–500

    PubMed  CAS  Google Scholar 

  45. Eyre DR, Oguchi H (1980) The hydroxypyridinium crosslinks of skeletal collagen: their measurement, properties and a proposed pathway of formation. Biochem Biophys Res Commun 92:403–410

    Article  PubMed  CAS  Google Scholar 

  46. Robins SP, Ducan A (1983) Cross-linking of the collagen. Location of pyridinoline in bovine articular cartilage at two sites of the molecules. Biochem J 215:167–173

    PubMed  CAS  Google Scholar 

  47. Fujimori E (1985) Ultraviolet light- and ozone-induced changes in pyridinoline, a trisubstituted 3-hydroxypyridinium crosslink of collagen. Biochim Biophys Acta 828:104–106

    PubMed  CAS  Google Scholar 

  48. Colwell A, Hamer A, Blumsohn A, Eastell R (1996) To determine the effects of ultraviolet light, natural light and ionizing radiation on pyridinium cross-links in bone and urine using high-performance liquid chromatography. Eur J Clin Invest 26:1107–1114

    Article  PubMed  CAS  Google Scholar 

  49. Saito M, Marumo K, Fujii K, Ishioka N (1997) Single-column high-performance liquid chromatographic-fluorescence detection of immature, mature, and senescent cross-links of collagen. Anal Biochem 253:26–32

    Article  PubMed  CAS  Google Scholar 

  50. Moro L, Romanello M, Favia A, Lamanna MP, Lozupone E (2000) Posttranslational modifications of bone collagen type I are related to the function of rat femoral regions. Calcif Tissue Int 66:151–156

    Article  PubMed  CAS  Google Scholar 

  51. Bailey AJ, Peach CM (1968) Isolation and structural identification of a labile intermolecular crosslink in collagen Biochem Biophys Res Commun 33:812–819

    CAS  Google Scholar 

  52. Barnes MJ, Constable BJ, Morton LF, Kodicek E (1971) Hydroxylysine in the N-terminal regions of the 1- and 2-chains of various collagens. Biochem J 125:433–437

    PubMed  CAS  Google Scholar 

  53. Knott L, Whitehead CC, Fleming RH, Bailey AJ (1995) Biochemical changes in the collagenous matrix of osteoporotic avian bone. Biochem J 310:1045–1051

    PubMed  CAS  Google Scholar 

  54. Kuypers R, Tyler M, Kurth LB, Jenkins ID, Horgan DJ (1992) Identification of the loci of the collagen-associated Ehrlich chromogen in type I collagen confirms its role as a trivalent cross-link. Biochem J 283:129–136

    PubMed  CAS  Google Scholar 

  55. Ristelli J, Eriksen H, Risteli L, Mansell JP, Bayley AJ (1994) Pyrrolic crosslinks are as abundant in human bone type I collagen as pyridinolines. J Bone Miner Res 9(Suppl 1):S186

    Google Scholar 

  56. Bailey AJ, Knott L (1999) Molecular changes in bone collagen in osteoporosis and osteoarthritis in the elderly. Exp Gerontol 1999 34:337–351

    CAS  Google Scholar 

  57. Eyre DR (1987) Collagen cross-linking amino acids. Methods Enzymol 144:115–139

    PubMed  CAS  Google Scholar 

  58. Hanson DA, Eyre DR (1996) Molecular site specificity of pyridinoline and pyrrole crosslinks in type I collagen of human bone. J Biol Chem 271:26508–26516

    Article  PubMed  CAS  Google Scholar 

  59. Knott L, Bailey AJ (1998) Collagen cross-links in mineralising tissues : a review of their chemistry, function, and clinical relevance. Bone 22:181–187

    Article  PubMed  CAS  Google Scholar 

  60. Bailey AJ, Paul RG, Knott L (1998) Mechanisms of maturation and ageing of collagen. Mech Ageing Dev 106:1–56

    Article  PubMed  CAS  Google Scholar 

  61. Eyre DR, Glimcher MJ (1973) Analysis of a crosslinked peptide from calf bone collagen: evidence that hydroxylysyl glycoside participates in the crosslink. Biochem Biophys Res Commun 52:663–671

    Article  PubMed  CAS  Google Scholar 

  62. Robins SP, Bailey AJ (1974) Isolation and characterization of glycosyl derivatives of the reducible cross-links in collagens. FEBS Lett 38:334–336

    Article  PubMed  CAS  Google Scholar 

  63. Lapolla A, Traldi P, Fedele D (2005) Importance of measuring products of non-enzymatic glycation of proteins. Clin Biochem. 2005 38:103–115

    CAS  Google Scholar 

  64. Wolff SP,Dean RT (1987) Glucose autoxidation and protein modification. The potential role of “autoxidative glycosylation” in diabetes. Biochem J 245:243–50

    PubMed  CAS  Google Scholar 

  65. Sell DR, Monnier VM (1989) Structure elucidation of a senescence crosslink from human extracellular matrix: implication of pentoses in the aging process. J Biol Chem 264:21597–21602

    PubMed  CAS  Google Scholar 

  66. Monnier VM, Cerami A (1983) Detection of nonenzymatic browning products in the human lens. Biochim Biophys Acta 760:97–103

    PubMed  CAS  Google Scholar 

  67. Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Ra Biol Med 23:134–147

    Article  CAS  Google Scholar 

  68. Brownlee M, Cerami A, Vlassara H (1988) Advanced glycosysalation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med 318:1315–1321

    Article  PubMed  CAS  Google Scholar 

  69. DeGroot J, Verzijl N, Wenting-Van Wijk MJ, Bank RA, Lafeber FP, Bijlsma JW, TeKoppele JM (2001) Age-related decrease in susceptibility of human articular cartilage to matrix metalloproteinase-mediated degradation: the role of advanced glycation end products. Arthritis Rheum 44:2562–2571

    Article  PubMed  CAS  Google Scholar 

  70. Brownlee M (1994) Lilly Lecture 1993. Glycation and diabetic complications. Diabetes 43:836–841

    PubMed  CAS  Google Scholar 

  71. Katayama Y, Akatsu T, Yamamoto M, Kugai N, Nagata N (1996) Role of nonenzymatic glycosylation of type I collagen in diabetic osteopenia. J Bone Miner Res 11:931–937

    PubMed  CAS  Google Scholar 

  72. Miyata T, Kawai R, Taketomi S, Sprague SM (1996) Possible involvement of advanced glycation end-products in bone resorption. Nephrol Dial Transplant 11:54S-57S

    Google Scholar 

  73. Verzijl N, DeGroot J, Ben ZC, Brau-Benjamin O, Maroudas A, Bank RA, Mizrahi J, Schalkwijk CG, Thorpe SR, Baynes JW, Bijlsma JW, Lafeber FP, TeKoppele JM (2002) Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage: a possible mechanism through which age is a risk factor for osteoarthritis. Arthritis Rheum 46:114–123

    Article  PubMed  CAS  Google Scholar 

  74. Chen AC, Temple MM, Ng DM, Verzijl N, DeGroot J, TeKoppele JM, Sah RL (2002) Induction of advanced glycation end products and alterations of the tensile properties of articular cartilage. Arthritis Rheum 46:3212–3217

    Article  PubMed  Google Scholar 

  75. Tomasek JJ, Meyers SW, Basinger JB, Green DT, Shew RL (1994) Diabetic and age-related enhancement of collagen-linked fluorescence in cortical bone of rats. Life Sci 55:855–861

    Article  PubMed  CAS  Google Scholar 

  76. Wang X, Shen X, Li X, Agrawal CM (2002) Age-related changes in the collagen network and toughness of bone. Bone 31:1–7

    Article  PubMed  Google Scholar 

  77. Vashishth D, Gibson GJ, Khoury JI, Schaffler MB, Kimura J, Fyhrie DP (2001) Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone 28:195–201

    Article  PubMed  CAS  Google Scholar 

  78. Clarke S (1987) Propensity for spontaneous succinimide formation from aspartyl and asparaginyl residues in cellular proteins. Int J Pept Protein Res 30:808–821

    Article  PubMed  CAS  Google Scholar 

  79. Maroudas A, Bayliss MT, Uchitel-Kaushansky N, Schneiderman R, Gilav E (1998) Aggrecan turnover in human articular cartilage: use of aspartic acid racemization as a marker of molecular age. Arch Biochem Biophys 350:61–71

    Article  PubMed  CAS  Google Scholar 

  80. Saido TC, Iwatsubo T, Mann DM, Shimada H, Ihara Y, Kawashima S. (1995) Dominant and differential deposition of distinct beta-amyloid peptide species, A beta N3(pE), in senile plaques. Neuron 14:457–466

    Article  PubMed  CAS  Google Scholar 

  81. Fledelius C, Johnsen AH, Cloos PA, Bonde M, Qvist P (1997) Characterisation of urinary degradation products derived from type I collagen. Identification of a beta-isomerized Asp-Gly sequence within the C-terminal telopeptide (alpha1) region. J Biol Chem 272:9755–9763

    Article  PubMed  CAS  Google Scholar 

  82. Roher AE, Lowenson JD, Clarke S, Wolkow C, Wang R, Cotter RJ, Reardon IM, Zurcher-Neely HA, Heinrikson RL, Ball MJ (1993) Structural alterations in the peptide backbone of beta-amyloid core protein may account for its deposition and stability in Alzheimer’s disease. J Biol Chem 268:3072–3083

    PubMed  CAS  Google Scholar 

  83. Geiger T and Clarke S (1987) Deamination, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. J Biol Chem 262:785–794

    PubMed  CAS  Google Scholar 

  84. Gineyts E, Cloos PA, Borel O, Grimaud L, Delmas PD, Garnero P (2000) Racemization and isomerisation of type I collagen C-telopeptides in human bone and soft tissues : assessment of tissue turnover. Biochem J 345:481–485

    Article  PubMed  CAS  Google Scholar 

  85. Tomiyama T, Asano S, Furiya Y, Shirasawa T, Endo N, Mori H (1994) Racemization of Asp23 residue affects the aggregation of Alzheimer amyloid beta protein analogues. J Biol Chem 269:10205–10208

    PubMed  CAS  Google Scholar 

  86. Cloos PA, Fledelius C (2000) Collagen fragments in urine derived from bone resorption are highly racemized and isomerised: a biological clock of protein aging with clinical potential. Biochem J 345:473–480

    Article  PubMed  CAS  Google Scholar 

  87. Shimizu T, Fukuda H, Murayama S, Izumiyama N, Shirasawa T. (2002) Isoaspartate formation at position 23 of amyloid beta peptide enhanced fibril formation and deposited onto senile plaques and vascular amyloids in Alzheimer’s disease. J Neurosci Res 70:451–461

    Article  PubMed  CAS  Google Scholar 

  88. Turner CH, Burr DB (1993) Basic biomechanical measurements of bone: a tutorial. Bone 14:595–608

    Article  PubMed  CAS  Google Scholar 

  89. Ottani V, Raspanti M, Ruggeri A (2001) Collagen structure and functional implications. Micron 32:251–260

    Article  PubMed  CAS  Google Scholar 

  90. Fratzl P, Paris O, Klaushofer K, Landis WJ (1996) Bone mineralization in an osteogenesis imperfecta mouse model studied by small-angle x-ray scattering. J Clin Invest 97:396–402

    Article  PubMed  CAS  Google Scholar 

  91. Vetter U, Eanes ED, Kopp JB, Termine JD, Robey PG (1991) Changes in apatite crystal size in bones of patients with osteogenesis imperfecta. Calcif Tissue Int 49:248–250

    PubMed  CAS  Google Scholar 

  92. Traub W, Arad T, Vetter U, Weiner S (1994) Ultrastructural studies of bones from patients with osteogenesis imperfecta. Matrix Biol 14:337–345

    Article  PubMed  CAS  Google Scholar 

  93. Marotti G, Muglia MA, Palumbo C (1994) Structure and function of lamellar bone. Clin Rheumatol 13 Suppl 1:63–68

    Google Scholar 

  94. Currey JD (1979) Change in impact energy absorption of bone with age. J Biomech 12:459–469

    Article  PubMed  CAS  Google Scholar 

  95. Currey JD (1988) The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J Biochem 21:131–139

    CAS  Google Scholar 

  96. Currey JD, Brear K, Zioupos P (1996) The effects of aging and changes in mineral content in degrading the toughness of human femora. J Biomech 29:257–260

    Article  PubMed  CAS  Google Scholar 

  97. Boskey AL, Wright TM, Blank RD (1999) Collagen and bone strength. J Bone Miner Res 14:330–335

    PubMed  CAS  Google Scholar 

  98. Wang X, Bank RA, TeKoppele JM, Agrawal CM (2001) The role of collagen in determining bone mechanical properties. J Orthop Res 19:1021–1026

    Article  PubMed  CAS  Google Scholar 

  99. Zioupos P, Currey JD, Hamer AJ (1999) The role of collagen in the declining mechanical properties of aging human cortical bone. J Biomed Mater Res 45:108–116

    Article  PubMed  CAS  Google Scholar 

  100. Thompson JB, Kindt JH, Drake B, Hansma HG, Morse DE, Hansma PK (2001) Bone indentation recovery time correlates with bond reforming time. Nature 414:773–776

    Article  PubMed  CAS  Google Scholar 

  101. Zioupos P (2001) human bone: factors affecting its biomechanical properties and the role of collagen. J Biomater Appl 15:187–229

    Article  PubMed  CAS  Google Scholar 

  102. Currey JD, Foreman J, Laketic I, Mitchell J, Pegg DE, Reilly GC (1997) Effects of ionizing radiation on the mechanical properties of human bone. J Orthop Res 15:111–117

    Article  PubMed  CAS  Google Scholar 

  103. Currey JD (2003) Role of collagen and other organics in the mechanical properties of bone. Osteoporos Int 14:S29-S36

    Article  Google Scholar 

  104. Fantner GE, Birkedal H, Kindt JH, Hassenkam T, Weaver JC, Cutroni JA, Bosma BL, Bawazer L, Finch MM, Cidade GA, Morse DE, Stucky GD, Hansma PK (2004) Influence of the degradation of the organic matrix on the microscopic fracture behavior of trabecular bone. Bone 35:1013–1022

    Article  PubMed  CAS  Google Scholar 

  105. Hert J, Fiala P, Petrtyl M (1994) Osteon orientation of the diaphysis of the long bones in man. Bone 15:269–277

    Article  PubMed  CAS  Google Scholar 

  106. Martin RB, Burr DB, Sharkey NA (1998) Skeletal tissue mechanics. Springer, Berlin Heidelberg New York

  107. Martin RB and Boardman DL (1993) The effects of collagen fiber orientation, porosity, density, and mineralization on bovine cortical bone bending properties. J Biomech 26:1047–1054

    PubMed  CAS  Google Scholar 

  108. Puustjarvi K, Nieminen J, Rasanen T, Hyttinen M, Helminen HJ, Kroger H, Huuskonen J, Alhava E, Kovanen V (2003) Do more highly organized collagen fibrils increase bone mechanical strength in loss of mineral density after one-year running training? J Bone Miner Res 14:321–329

    Google Scholar 

  109. Oxlund H, Barckman M, Ortoft G, Andreassen TT (1995) Reduced concentrations of collagen cross-links are associated with reduced strength of bone. Bone 17:365S–371S

    PubMed  CAS  Google Scholar 

  110. Lees S, Hanson D, Page E, Mook HA (1994) Comparison of dosage-dependent effects of beta-aminopropionitrile, sodium fluoride, and hydrocortisone on selected physical properties of cortical bone. J Bone Miner Res 9:1377–1389

    PubMed  CAS  Google Scholar 

  111. Masse PG, Rimnac CM, Yamauchi M, Coburn SP, Rucker RB, Howell DS, Boskey AL (1996) Pyridoxine deficiency affects biomechanical properties of chick tibial bone. Bone 18:567–574

    Article  PubMed  CAS  Google Scholar 

  112. Opsahl W, Zeronian H, Ellison M, Lewis D, Rucker RB, Riggins RS (1982) Role of copper in collagen cross-linking and its influence on selected mechanical properties on selected mechanical properties of chick bone and tendon. J Nutr 112:708–716

    PubMed  CAS  Google Scholar 

  113. Banse X, Devogelaer JP, Lafosse A, Sims TJ, Grynpas M, Bailey AJ (2002) Cross-link profile of bone collagen correlates with structural organization of trabeculae. Bone 31:70–76

    Article  PubMed  CAS  Google Scholar 

  114. Banse X, Sims TJ, Bailey AJ (2002) Mechanical properties of adult vertebral cancellous bone: correlation with collagen intermolecular cross-links. J Bone Miner Res 17:1621–1628

    PubMed  CAS  Google Scholar 

  115. Uzawa K, Grzesik WJ, Nishiura T, Kuznetsov SA, Robey PG, Brenner DA, Yamauchi M (1999) Differential expression of human lysyl hydroxylase genes, lysine hydroxylation, and cross-linking of type I collagen during osteoblastic differentiation in vitro. J Bone Miner Res 14:1272–1280

    PubMed  CAS  Google Scholar 

  116. Pornprasertsuk S, Duarte WR, Mochida Y, Yamauchi M (2004) Lysyl hydroxylase-2b directs collagen cross-linking pathways in MC3T3-E1 cells. J Bone Miner Res 19:1349–1355

    PubMed  CAS  Google Scholar 

  117. Pornprasertsuk S, Duarte WR, Mochida Y, Yamauchi M (2005) Overexpression of lysyl hydroxylase-2b leads to defective collagen fibrillogenesis and matrix mineralization. J Bone Miner Res 20:81–87

    PubMed  CAS  Google Scholar 

  118. Vashishth D, Wu P, Gibson GJ (2003) Age-related loss in bone toughness is explained by non-enzymatic glycation of collagen. 49th annual meeting of the Orthopaedic Research Society, New Orleans

  119. Boxberger J, Vashishth D (2003) Nonenzymatic glycation affects bone fracture by modifying creep and inelastic properties of collagen. 49th annual meeting of the Orthopaedic Research Society, New Orleans

  120. Wu P, Koharski C, Nonnemann H, Vashishth D (2003) Loading of non-enzymatically glycated and damaged bone results in an instantaneous fracture. 49th annual meeting of the Orthopaedic Research Society, New Orleans

  121. Garnero P, Proust Y, Borel O, Gineyts E, Duboeuf F, Solberg H, Delmas P (2003) Collagen crosslinking modifies the mechanical properties of cortical bone. J Bone Miner Res 18(Suppl 2):S196

    Google Scholar 

  122. Garnero P, Borel O, Gineyts E, Duboeuf F, Christiansen C, Delmas P (2004) The degree of posttranslational modifications of collagen is an important determinant of the toughness of cortical bone. J Bone Miner Res 19(Suppl 1):S220

    Google Scholar 

  123. Rauch F, Glorieux F (2004) Osteogenesis imperfecta. Lancet 363:1377–1385

    Article  PubMed  CAS  Google Scholar 

  124. Kirsch E, Krieg T, Remberger K, Fendel H, Bruckner P, Muller PK (1981) Disorder of collagen metabolism in a patient with osteogenesis imperfecta (lethal type): increased degree of hydroxylation of lysine in collagen type I and III. Eur J Clin Invest 11:39–47

    PubMed  CAS  Google Scholar 

  125. Grabner B, Landis WJ, Roschger P, Rinnerthaler S, Peterlik H, Klaushofer K, Fratzl P (2001) Age- and genotype-dependence of bone material properties in the osteogenesis imperfecta murine model (oim). Bone 29:453–457

    Article  PubMed  CAS  Google Scholar 

  126. Jepsen KJ, Schaffler MB, Kuhn JL, Goulet RW, Bonadio J, Goldstein SA (1997) Type I collagen mutation alters the strength and fatigue behavior of Mov 13 cortical tissue. J Biomech 30:1141–1147

    Article  PubMed  CAS  Google Scholar 

  127. Pereira RF, Hume EL, Halford KW, Prockop DJ (1995) Bone fragility in transgenic mice expressing a mutated gene for type I procollagen (COL1A1) parallels the age-dependent phenotype of human osteogenesis imperfecta. J Bone Miner Res 10:1837–1843

    PubMed  CAS  Google Scholar 

  128. Garnero P, Fledelius C, Gineyts E, Serre CM, Vignot E, Delmas PD (1997) Decreased beta-isomerization of the C-terminal telopeptide of type I collagen alpha 1 chain in Paget’s disease of bone. J Bone Miner Res 12:1407–1415

    PubMed  CAS  Google Scholar 

  129. Garnero P, Gineyts E, Schaffer AV, Seaman J, Delmas PD (1998) Measurement of urinary excretion of nonisomerized an beta-isomerized forms of type I collagen breackdown products to monitor the effects of the bisphosphonate zoledronate in Paget’s disease. Arthritis Rheum 41:354–360

    Article  PubMed  CAS  Google Scholar 

  130. Mikkonen L, Tuominen T and Kulonen E (1960) Collagen fractions in lathyritic rats. Bioch Pharma 3:181–183

    Article  CAS  Google Scholar 

  131. Lees S, Barnard S, Mook H (1987) Neutron studies of collagen in lathyritic bone. Int J Biol Macromol 9:32–38

    Article  CAS  Google Scholar 

  132. Grant SF, Reid DM, Blake G, Herd R, Fogelman I, Ralston SH (1996) Reduced bone density and osteoporosis associated with a polymorphic Sp1 binding site in the collagen type I alpha 1 gene. Nature Genet 14:40–45

    Article  Google Scholar 

  133. Mann V and Ralston SH (2003) Meta-analysis of COL1A1 Sp1 polymorphism in relation to bone mineral density and osteoporotic fracture. Bone 32:711–717

    Article  PubMed  CAS  Google Scholar 

  134. Mann V, Hobson EE, Li B, Stewart TL, Grant SF, Robins SP, Aspden RM, Ralston SH (2001) A COL1A Sp1 binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality. J Clin Invest 107:899–907

    PubMed  CAS  Google Scholar 

  135. Uitterlinden AG, Burger H, Huang Q, Yue F, McGuigan FE, Grant SF, Hofman A, van Leeuwen JP, Pols HA, Ralston SH (1998) Relation of alleles of the collagen type I alpha1 gene to bone density and the risk of osteoporotic fractures in postmenopausal women. N Engl J Med 338:1016–1021

    Article  PubMed  CAS  Google Scholar 

  136. Schwartz AV, Sellmeyer DE, Ensrud KE, Cauley JA, Tabor HK, Schreiner PJ, Jamal SA, Black DM, Cummings SR (2001) Older women with diabetes have an increased risk of fractures: a prospective study. J Clin Endocrinol Metab 86:32–38

    Article  PubMed  CAS  Google Scholar 

  137. Nicodemus KK, Folsom AR (2001) Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care 24:1192–1197

    PubMed  CAS  Google Scholar 

  138. Keegan TH, Kelsey JL, Sidney S, Quesenberry CP Jr (2002) Foot problems as risk factors of fractures. Am J Epidemiol 155:926–931

    Article  PubMed  Google Scholar 

  139. Reddy KG, Stehno-bittel L, Hamade S, Enwemeka CS (2001) The biomechanical integrity of bone in experimemtal diabetes. Diabetes Res Cli Pract 54:1–8

    Article  CAS  Google Scholar 

  140. Verhaeghe J, Suiker AM, Einhorn TA, Geusens P, Visser WJ, Van Herck E, Van Bree R, Magitsky S, Bouillon R (1994) Brittle bones in spontaneously diabetic female rats cannot be predicted by bone mineral measurements: studies in diabetic and ovariectomized rats. J Bone Miner Res 9:1657–1667

    Article  PubMed  CAS  Google Scholar 

  141. Paul RG, Bailey AJ (1996) Glycation of collagen: the basis of its central role in the late complications of ageing and diabetes. Int J Biochem Cell Biol 28:1297–1310

    Article  PubMed  CAS  Google Scholar 

  142. Sanada H, Shikata J, Hamamoto H, Ueba Y, Yamamuro T, Takeda T (1978) Changes in collagen cross-linking and lysyl oxidase by estrogen. Biochim Biophys Acta 541:408–413

    PubMed  CAS  Google Scholar 

  143. Feres-Filho EJ, Choi YJ, Han X, Takala TE, Trackman PC (1995) Pre-translational and post-translational regulation of lysyl oxidase by transforming growth-factor-beta-1 in osteoblastic MC3T3-E1 cells. J Biol Chem 270:30797–30803

    Article  PubMed  CAS  Google Scholar 

  144. Seitzer U, Batge B, Acil Y, Muller PK (1995) Transforming growth-factor beta 1 influences lysyl hydroxylation of collagen I and reduces steady-state level of lysyl hydroxylase mRNA in human osteoblast-like cells. Eur J Clin Invest 25:959–966

    PubMed  CAS  Google Scholar 

  145. Kowitz J, Knippel M, Schuhr T, Mach J (1997) Alteration in the extent of collagen I hydroxylation, isolated from femoral heads of women with a femoral neck fracture caused by osteoporosis. Calcif Tissue Int 60:501–505

    Article  PubMed  CAS  Google Scholar 

  146. Batge B, Diebold J, Stein H, Bodo M, Muller PK (1992) Compositionnal analysis of the collagenous bone matrix. A study on adult normal and osteopenic bone tissue. Eur J Clin Invest 22:805–812

    PubMed  CAS  Google Scholar 

  147. Bailey AJ, Wotton SF, Sims TJ, Thompson PW (1993) Biochemical changes in the collagen of human osteoporotic bone matrix. Connect Tissue Res 29:119–132

    PubMed  CAS  Google Scholar 

  148. Torre-Blanco A, Adachi E, Hojima Y, Wootton JA, Minor RR, Prockop DJ (1992) Temperature induced post-translational over-modification of type I collagen. Effects of over-modification of the protein on the rate of cleavage by procollagen N-proteinase and on self-assembly of collagen into fibrils. J Biol Chem 267:2650–2655

    PubMed  CAS  Google Scholar 

  149. Oxlund H, Mosekilde L, Ortoft G (1996) Reduced concentration of collagen reducible crosslinks in human trabecular bone with respect to age and osteoporosis. Bone 19:479–484

    Article  PubMed  CAS  Google Scholar 

  150. Paschalis EP, Shane E, Lyritis G, Skarantavos G, Mendelsohn R, Boskey AL (2004) Bone fragility and collagen cross-links. J Bone Miner Res 19:2000–2004

    PubMed  Google Scholar 

  151. Garnero P, Cloos P, Sornay-Rendu E, Qvist P, Delmas PD (2002) Type I collagen racemization and isomerisation and the risk of fracture in postmenopausal women: the OFELY prospective study. J Bone Miner Res 17:826–833

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank D. Herbage for thoroughly reviewing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. D. Delmas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viguet-Carrin, S., Garnero, P. & Delmas, P.D. The role of collagen in bone strength. Osteoporos Int 17, 319–336 (2006). https://doi.org/10.1007/s00198-005-2035-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-005-2035-9

Keywords

Navigation