Skip to main content
Log in

Optimization strategies for DNA investigations of highly degraded corpses

Disaster victim identification

Optimierter Workflow für DNA-Analysen an hochgradig postmortal veränderten Leichen

Identifikation von Katastrophenopfern

  • Originalien
  • Published:
Rechtsmedizin Aims and scope Submit manuscript

Abstract

Background

The successful post-mortem identification of highly degraded corpses and mass disaster victims using forensic molecular genetic analyses is a challenging task and particularly influenced by the efficacy and evaluation of standard examinations in the laboratory workflow. In many cases only highly degraded soft tissue is present, so that only bones, teeth or nails are available for DNA analysis. A lack of expertise in bone preparation for DNA typing in conjunction with the choice of time-consuming methods often leads to large delays during victim identification.

Objectives

The present study was carried out to provide an alternative method aimed at efficient mechanical grinding of bone and molecular genetic analyses in conjunction with time-minimizing strategies.

Material and methods

The sample batch consisted of diaphysis sections from the femurs of 18 corpses with post-mortem intervals (PMIs) ranging from 1 week to 5.5 years. Time saving was achieved by optimizing sample preparation and genotyping processes (i.e. DNA purification, quantification and STR analysis) in this study.

Results

In comparison with other commonly used procedures, which require 1 to 2 weeks for complete analysis, it was possible to obtain DNA identification profiles in only 2.5 days. Semi-automated sub-processes for certain steps of the complete workflow allowed minimal staffing with a high sample throughput (50 bones per week).

Conclusion

The present workflow supplements existing standard procedures in the laboratory especially in cases where a large number of low quality samples are to be tested and DNA results are urgently needed, e.g. in disaster victim identification (DVI).

Zusammenfassung

Hintergrund

Die erfolgreiche Identifizierung Verstorbener mit fortgeschrittenen postmortalen Veränderungen, z. B. nach Massenkatastrophen, mithilfe forensischer molekulargenetischer Analysen stellt immer noch eine Herausforderung für die Laborroutine dar. Der Analyseerfolg wird maßgeblich durch existierende Prüfstandards im Arbeitsablauf und die Laborlogistik beeinflusst. In vielen Fällen ist das Weichgewebe so verändert, dass nur Knochen, Zähne bzw. Nägel für die DNA-Analyse zur Verfügung stehen. Fehlendes Know-how im Bereich der Vorbereitung für die DNA-Analytik an Knochenmaterial in Verbindung mit der Auswahl zeitaufwendiger Methoden führt oft zu einer enormen zeitlichen Verzögerung bei der Identifizierung.

Ziel

Vor diesem Hintergrund wird innerhalb der Studie ein alternativer methodischer Workflow für die DNA-Typisierung vorgestellt.

Material und Methoden

Untersucht wurden Diaphysenabschnitte der Femora von 18 Verstorbenen, die unterschiedlich stark ausgeprägte Erscheinungen fortgeschrittener Leichenveränderungen aufwiesen. Das postmortale Intervall lag zwischen einer Woche und 5,5 Jahren. Eine Zeitersparnis im Analyseprozess wurde durch Optimierung der Probenaufbereitungstechnik und einzelner DNA-Analyseschritte (DNA-Isolation, Quantifizierung, STR-Analyse) erreicht.

Ergebnisse

Durch die Optimierung einzelner Prozessschritte und Anwendung neuartiger, sensitiver DNA-Analyse Kits war es möglich, das Zeitfenster für einen vollständigen Analyseprozess von bisher benötigten 1–2 Wochen, auf 2,5 Tage zu minimieren. Der optimierte Workflow mit für manche Teilprozesse semiautomatisierten Prozessen ermöglicht einen hohen Probendurchlauf (50 Knochen pro Woche) bei minimalem personellem Aufwand.

Zusammenfassung

Der Workflow ergänzt bestehende Standardprozeduren im forensischen Labor, vor allem wenn eine große Anzahl qualitativ minderwertiger Proben unter hohem Zeitdruck zu untersuchen ist, beispielsweise zur Opferidentifizierung nach Massenkatastrophen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alaeddini R (2012) Forensic implications of PCR inhibition—a review. Forensic Sci Int Genet 6(3):297–305

    Article  CAS  PubMed  Google Scholar 

  2. Alaeddini R, Walsh SJ, Abbas A (2010) Forensic implications of genetic analyses from degraded DNA – a review. Forensic Sci Int Genet 4:148–157

    Article  CAS  PubMed  Google Scholar 

  3. Amory S, Huel R, Bilic’ A et al (2012) Automatable full demineralization DNA extraction procedure from degraded skeletal remains. Forensic Sci Int Genet 6:398–406

    Article  CAS  PubMed  Google Scholar 

  4. Anslinger K, Bayer B, Rolf B et al (2005) Application of the BioRobot EZ1 in a forensic laboratory. Leg Med 7:164–168

    Article  CAS  Google Scholar 

  5. Boles TC, Snow CC, Stover E (1995) Forensic DNA testing of skeletal remains from massgraves: a pilot study. J Forensic Sci 4:(3)349–355

    Google Scholar 

  6. Caputo M, Irisarri M, Alechine E (2013) A DNA extraction method of small quantities of bone for high-quality genotyping. Forensic Sci Int 7:488–493

    Article  CAS  Google Scholar 

  7. Chun-Yen L, Tsun-Ying H, Hsuan-Cheng S et al (2011) The strategies to DVI challenges in Typhoon Morakot. Int J Leg Med 125:637–641

    Article  Google Scholar 

  8. Davoren J, Vanek D, Konjhodzic R et al (2007) Highly effective DNA extraction method for nuclear short tandem repeat testing of skeletal remains from mass graves. Croat Med J 48:478–485

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Dukes MJ, Williams AL, Massey CM et al (2012) Technical note: bone DNA extraction and purification using silica-coated paramagnetic beads. Am J Phys Anthropol 148(3):473–482

    Article  PubMed  Google Scholar 

  10. Green RL, Roinestad IC, Boland C et al (2005) Developmental validation of the QuantifilerTM real-time PCR Kits for the quantification of human nuclear DNA samples. J Forensic Sci 50(4):1–17

    Article  Google Scholar 

  11. Holland MM, Cave CA, Holland CA et al (2003) Development of a quality, high throughput DNA analysis procedure for skeletal samples to assist with the identification of victims from the World Trade Center attacks. Croat Med J 44:(3)264–272

    PubMed  Google Scholar 

  12. Jakubowska J, Maciejewska A, Pawłowski R (2012) Comparison of three methods of DNA extraction from human bones with different degrees of degradation. Int J Leg Med 126:173–178

    Article  Google Scholar 

  13. Kitayama T, Ogawa Y, Fujii K et al (2012) Evaluation of a new experimental kit for the extraction of DNA from bones and teeth using a non-powder method. Leg Med 12(2):84–89 (Tokyo)

    Article  Google Scholar 

  14. Lessig R, Aspinall L, Bratzke H (2009) Identification processes in mass disasters and catastrophes. Current standards. Leg Med 19:209–212

    Google Scholar 

  15. Loreille OM, Diegoli TM, Irwin JA et al (2007) High efficiency DNA extraction from bone by total demineralization. Forensic Sci Int Genet 1:191–195

    Article  PubMed  Google Scholar 

  16. Micozzi MS (1986) Experimental study of postmortem change under field conditions: effects of freezing, thawing, and mechanical injury. J For Sci 31:953–961

    CAS  Google Scholar 

  17. Parsons TJ, Huel R, Davoren J et al (2007) Application of novel mini-amplicon str multiplexes to high volume casework on degraded skeletal remains. Forensic Sci Int Genet 1:(2)175–179

    Article  PubMed  Google Scholar 

  18. Peschel O, Lessig R, Grundmann C et al (2005) Tsunami 2004. Medico-legal experience of the identification committee during the first days in Thailand. Leg Med 15:430–437

    Google Scholar 

  19. Piglionica M, De Donno A, Baldassarra SL et al (2012) Extraction of DNA from bones in cases where expectations for success are low. Am J Forensic Med Pathol 33(4):322–327

    Article  PubMed  Google Scholar 

  20. Prinz M, Carracedo A, Mayr WR et al (2007) DNA Commission of the International Society for Forensic Genetics (ISFG): recommendations regarding the role of forensic genetics for disaster victim identification (DVI). Forensic Sci Int Genet 1(1):3–12

    Article  CAS  PubMed  Google Scholar 

  21. Putkonen MT, Palo JU, Cano JM et al (2010) Factors affecting the STR amplification success in poorly preserved bone samples. Investig Genet 1:9

    Article  PubMed Central  PubMed  Google Scholar 

  22. Rohland N, Hofreiter M (2007) Ancient DNA extraction from bones and teeth. Nat Protoc 2:1756–1762

    Article  CAS  PubMed  Google Scholar 

  23. Rohland N, Hofreiter M (2007) Comparison and optimization of ancient DNA extraction. Biotechniques 42:343–352

    Article  CAS  PubMed  Google Scholar 

  24. Salamon M, Tuross N, Arensburg B et al (2005) Relatively well preserved DNA is present in the crystal aggregates of fossil bones. Proc Natl Acad Sci U.S.A. 102:13783–13788

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Schwark T, Poetsch M, Preuße-Prange A et al (2012) Genetic identification of human remains. Experiences with different reference samples. Leg Med 22:385–390

    Google Scholar 

  26. Steinlechner M, Parson W, Rabl W et al (2005) Streamlined DNA laboratory strategy for identification of mass disaster victims. DNA typing of Sri Lanka victim samples and ante mortem data-matching procedures after the Tsunami disaster. Leg Med 15:473–478

    Google Scholar 

  27. Thomas JT, Berlin RM, Barker JM et al (2013) Qiagen’s InvestigatorTM Quantiplex Kit as a predictor of STR amplification success from Low-yield DNA samples. J Forensic 58(5):1306–9

    Article  CAS  Google Scholar 

  28. Valgren C, Wester S, Hansson O (2008) A comparison of three automated DNA purification methods in forensic casework. Forensic Sci Int Genet Suppl Ser 1:76–77

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.-M. Pflugbeil.

Ethics declarations

Conflict of interest

A.M. Pflugbeil, M. Harthun, D. Labudde, J. Edelmann, J. Dreßler and K. Thiele declare that there are no conflicts of interest. All analyses on samples described in this study were carried out in accordance with the Helsinki Declaration of 1964 (in its current, revised form, 2013).

The accompanying manuscript does not include studies on humans or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pflugbeil, AM., Harthun, M., Labudde, D. et al. Optimization strategies for DNA investigations of highly degraded corpses. Rechtsmedizin 25, 268–273 (2015). https://doi.org/10.1007/s00194-015-0042-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00194-015-0042-5

Keywords

Schlüsselwörter

Navigation