Skip to main content

Advertisement

Log in

A novel, 4-h DNA extraction method for STR typing of casework bone samples

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Bones are often found in mass grave crime scene. To increase DNA identification success rates, a highly efficient DNA extraction method should be selected. Several DNA extraction methods for human bones have been published yet never been systematically compared, and some are time-consuming or complex. As such, a quick and highly efficient DNA extraction method was developed and compared with three published methods (Hi-Flow silica-based, total demineralization (TD) and PrepFiler BTA) using 70 fresh and 22 casework bones from different body parts. The highest median DNA concentrations were obtained from developed method (135.85 ng/μL and 0.224 ng/μL for fresh and casework bones, respectively). For residual PCR inhibitors, the threshold cycle (Ct) of the internal positive control (IPC) showed that developed method and PrepFiler BTA removed most PCR inhibitors. Similarly, 95.45% of casework STR profiles obtained using the developed protocol meet the standard requirements for Australian National Criminal Investigative DNA Database (NCIDD) entry, followed by 86.35% using TD, 81.82% using PrepFiler BTA, and 45.45% using Hi-Flow. Additionally, DNA extracts from seven different bones revealed that the 1st distal phalange of the hand contained the highest DNA concentration of 338.43 ng/μL, which was three times higher than the tibia and femur. Our findings suggest that developed method was highly efficient for casework bone analysis. It significantly reduced the extraction processing time down to 4 h and is two to four times cheaper compared with other methods. In practice, both the extraction method and the bone sampling must be considered by a forensic DNA analyst to increase the chances of successful identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gill JR (2006) 9/11 and the New York city office of chief medical examiner. Forensic Sci Med Pathol 2(1):29–32

    PubMed  Google Scholar 

  2. Holland MM, Cave CA, Holland CA, Bille TW (2003) Development of a quality, high throughput DNA analysis procedure for skeletal samples to assist with the identification of victims from the World Trade Center attacks. Croat Med J 44(3):264–272

    PubMed  Google Scholar 

  3. Kieser JA, Laing W, Herbison P (2006) Lessons learned from large-scale comparative dental analysis following the South Asian tsunami of 2004. J Forensic Sci 51(1):109–112

    PubMed  Google Scholar 

  4. Rainio J, Hedman M, Karkola K, Lalu K, Peltola P, Ranta H, Sajantila A, Söderholm N, Penttilä A (2001) Forensic osteological investigations in Kosovo. Forensic Sci Int 121(3):166–173

    CAS  PubMed  Google Scholar 

  5. Cattaneo C et al (2010) Unidentified bodies and human remains: an Italian glimpse through a European problem. Forensic Sci Int 195(1–3):167 e1–167 e6

    Google Scholar 

  6. Cattaneo C, Ritz-Timme S, Schutz HW, Collins M, Waite E, Boormann H, Grandi M, Kaatsch HJ (2000) Unidentified cadavers and human remains in the EU: an unknown issue. Int J Legal Med 113(3):N2–N3

    CAS  PubMed  Google Scholar 

  7. Ciaffi R, Gibelli D, Cattaneo C (2011) Forensic radiology and personal identification of unidentified bodies: a review. Radiol Med 116(6):960–968

    CAS  PubMed  Google Scholar 

  8. Hillewig E, de Tobel J, Cuche O, Vandemaele P, Piette M, Verstraete K (2011) Magnetic resonance imaging of the medial extremity of the clavicle in forensic bone age determination: a new four-minute approach. Eur Radiol 21(4):757–767

    PubMed  Google Scholar 

  9. Pereira C, Bernardo M, Pestana D, Santos JC, Mendonça MC (2010) Contribution of teeth in human forensic identification--discriminant function sexing odontometrical techniques in Portuguese population. J Forensic Legal Med 17(2):105–110

    Google Scholar 

  10. Zietkiewicz E et al (2012) Current genetic methodologies in the identification of disaster victims and in forensic analysis. J Appl Genet 53(1):41–60

    CAS  PubMed  Google Scholar 

  11. Andreasson H et al (2006) Quantification of mtDNA mixtures in forensic evidence material using pyrosequencing. Int J Legal Med 120(6):383–390

    CAS  PubMed  Google Scholar 

  12. Borsting C, Morling N (2015) Next generation sequencing and its applications in forensic genetics. Forensic Sci Int Genet 18:78–89

    PubMed  Google Scholar 

  13. Budowle B et al (2004) Single nucleotide polymorphisms and microarray technology in forensic genetics - development and application to mitochondrial DNA. Forensic Sci Rev 16(1):21–36

    CAS  PubMed  Google Scholar 

  14. Hochmeister MN, Budowle B, Borer UV, Eggmann U, Comey CT, Dirnhofer R (1991) Typing of deoxyribonucleic acid (DNA) extracted from compact bone from human remains. J Forensic Sci 36(6):1649–1661

    CAS  PubMed  Google Scholar 

  15. Mitchelson KR (2003) The use of capillary electrophoresis for DNA polymorphism analysis. Mol Biotechnol 24(1):41–68

    CAS  PubMed  Google Scholar 

  16. Rankin DR, Narveson SD, Birkby WH, Lai J (1996) Restriction fragment length polymorphism (RFLP) analysis on DNA from human compact bone. J Forensic Sci 41(1):40–46

    CAS  PubMed  Google Scholar 

  17. Rohland N, Hofreiter M (2007) Ancient DNA extraction from bones and teeth. Nat Protoc 2(7):1756–1762

    CAS  PubMed  Google Scholar 

  18. Kulstein G, Hadrys T, Wiegand P (2018) As solid as a rock-comparison of CE- and MPS-based analyses of the petrosal bone as a source of DNA for forensic identification of challenging cranial bones. Int J Legal Med 132(1):13–24

    PubMed  Google Scholar 

  19. Milos A, Selmanović A, Smajlović L, Huel RL, Katzmarzyk C, Rizvić A, Parsons TJ (2007) Success rates of nuclear short tandem repeat typing from different skeletal elements. Croat Med J 48(4):486–493

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Mundorff A, Davoren JM (2014) Examination of DNA yield rates for different skeletal elements at increasing post mortem intervals. Forensic Sci Int Genet 8(1):55–63

    CAS  PubMed  Google Scholar 

  21. Trueman CN, Martill DM (2002) The long–term survival of bone: the role of bioerosion. Archaeometry 44(3):371–382

    CAS  Google Scholar 

  22. Jakubowska J, Maciejewska A, Pawlowski R (2012) Comparison of three methods of DNA extraction from human bones with different degrees of degradation. Int J Legal Med 126(1):173–178

    PubMed  Google Scholar 

  23. Loreille OM, Parr RL, McGregor K, Fitzpatrick CM, Lyon C, Yang DY, Speller CF, Grimm MR, Grimm MJ, Irwin JA, Robinson EM (2010) Integrated DNA and fingerprint analyses in the identification of 60-year-old mummified human remains discovered in an Alaskan glacier. J Forensic Sci 55(3):813–818

    CAS  PubMed  Google Scholar 

  24. Putkonen MT et al (2010) Factors affecting the STR amplification success in poorly preserved bone samples. Investig Genet 1:9

    PubMed  PubMed Central  Google Scholar 

  25. Gamba C, Hanghøj K, Gaunitz C, Alfarhan AH, Alquraishi SA, al-Rasheid KA, Bradley DG, Orlando L (2016) Comparing the performance of three ancient DNA extraction methods for high-throughput sequencing. Mol Ecol Resour 16(2):459–469

    CAS  PubMed  Google Scholar 

  26. Rohland N, Hofreiter M (2007) Comparison and optimization of ancient DNA extraction. Biotechniques 42(3):343–352

    CAS  PubMed  Google Scholar 

  27. Tsukada K, Harayama Y (2015) DNA extraction with silica membrane column from teeth left in soil for more than 60 years. Forensic Sci Int Genet Suppl Ser 5:e133–e134

    Google Scholar 

  28. Marshall PL, Stoljarova M, Schmedes SE, King JL, Budowle B (2014) A high volume extraction and purification method for recovering DNA from human bone. Forensic Sci Int Genet 12:155–160

    CAS  PubMed  Google Scholar 

  29. Amory S, Huel R, Bilić A, Loreille O, Parsons TJ (2012) Automatable full demineralization DNA extraction procedure from degraded skeletal remains. Forensic Sci Int Genet 6(3):398–406

    CAS  PubMed  Google Scholar 

  30. Loreille OM, Diegoli TM, Irwin JA, Coble MD, Parsons TJ (2007) High efficiency DNA extraction from bone by total demineralization. Forensic Sci Int Genet 1(2):191–195

    PubMed  Google Scholar 

  31. Barbaro A, Cormaci P, Falcone G (2011) Validation of BTA™ lysis buffer for DNA extraction from challenged forensic samples. Forensic Sci Int Genet Suppl Ser 3(1):e61–e62

    Google Scholar 

  32. Stray J et al (2009) Extraction of high quality DNA from biological materials and calcified tissues. Forensic Sci Int Genet Suppl Ser 2(1):159–160

    Google Scholar 

  33. Prinz M, Carracedo A, Mayr WR, Morling N, Parsons TJ, Sajantila A, Scheithauer R, Schmitter H, Schneider PM, International Society for Forensic Genetics (2007) DNA Commission of the International Society for Forensic Genetics (ISFG): recommendations regarding the role of forensic genetics for disaster victim identification (DVI). Forensic Sci Int Genet 1(1):3–12

    CAS  PubMed  Google Scholar 

  34. Willey P, Galloway A, Snyder L (1997) Bone mineral density and survival of elements and element portions in the bones of the Crow Creek massacre victims. Am J Phys Anthropol 104(4):513–528

    CAS  PubMed  Google Scholar 

  35. Grgicak CM, Urban ZM, Cotton RW (2010) Investigation of reproducibility and error associated with qPCR methods using Quantifiler(R) Duo DNA quantification kit. J Forensic Sci 55(5):1331–1339

    CAS  PubMed  Google Scholar 

  36. Phillips, N. (2017) YaRrr! The pirate’s guide to R. Available from: https://bookdown.org/ndphillips/YaRrr/YaRrr.pdf. AccessED 27 May 2019

  37. Morey RD et al. (2018) Package ‘BayesFactor’. Available from: https://cran.r-project.org/web/packages/BayesFactor/BayesFactor.pdf. Accessed 27 May 2019

  38. Kruschke JK (2013) Bayesian estimation supersedes the t test. J Exp Psychol Gen 142(2):573–603

    PubMed  Google Scholar 

  39. Zupanic Pajnic I et al (2016) Highly efficient automated extraction of DNA from old and contemporary skeletal remains. J Forensic Legal Med 37:78–86

    Google Scholar 

  40. Liu Q, Liu L, Zhang M, Zhang Q, Wang Q, Ding X, Shao L, Zhou Z, Wang S (2018) A simple and efficient method of extracting DNA from aged bones and teeth. J Forensic Sci 63(3):824–828

    CAS  PubMed  Google Scholar 

  41. Evison MP, Smillie DM, Chamberlain AT (1997) Extraction of single-copy nuclear DNA from forensic specimens with a variety of postmortem histories. J Forensic Sci 42(6):1032–1038

    CAS  PubMed  Google Scholar 

  42. Pérez-Martínez C, Pérez-Cárceles MD, Legaz I, Prieto-Bonete G, Luna A (2017) Quantification of nitrogenous bases, DNA and collagen type I for the estimation of the postmortem interval in bone remains. Forensic Sci Int 281:106–112

    PubMed  Google Scholar 

  43. Mattayat D, Kitpipit T, Phetpeng S, Asawutmangkul W, Thanakiatkrai P (2016) Comparative performance of AmpFLSTR(R) Identifiler(R) Plus PCR amplification kit and QIAGEN(R) Investigator(R) IDplex Plus kit. Sci Justice 56(6):468–474

    PubMed  Google Scholar 

  44. Brevnov MG, Pawar HS, Mundt J, Calandro LM, Furtado MR, Shewale JG (2009) Developmental validation of the PrepFiler Forensic DNA Extraction Kit for extraction of genomic DNA from biological samples. J Forensic Sci 54(3):599–607

    CAS  PubMed  Google Scholar 

  45. Khosravinia H, Ramesha KP (2007) Influence of EDTA and magnesium on DNA extraction from blood samples and specificity of polymerase chain reaction. Afr J Biotechnol 6(3):184–187

    CAS  Google Scholar 

  46. Eggert T (2006) PCR troubleshooting: the essential guide. Expert Rev Mol Diagn. https://doi.org/10.1586/14737159.6.5.647.

    Google Scholar 

  47. Kline MC, Hill CR, Decker AE, Butler JM (2011) STR sequence analysis for characterizing normal, variant, and null alleles. Forensic Sci Int Genet 5(4):329–332

    CAS  PubMed  Google Scholar 

  48. Sinha RP, Hader DP (2002) UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1(4):225–236

    CAS  PubMed  Google Scholar 

  49. Cadet J, Davies KJA (2017) Oxidative DNA damage & repair: an introduction. Free Radic Biol Med 107:2–12

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Dash HR, Das S (2018) Microbial degradation of forensic samples of biological origin: potential threat to human DNA typing. Mol Biotechnol 60(2):141–153

    CAS  PubMed  Google Scholar 

  51. Shokolenko I, Venediktova N, Bochkareva A, Wilson GL, Alexeyev MF (2009) Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids Res 37(8):2539–2548

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hughes-Stamm S (2013) DNA typing methods for highly degraded samples. In: Faculty of health sciences and medicine. Bond University, p 402

  53. Misner LM, Halvorson AC, Dreier JL, Ubelaker DH, Foran DR (2009) The correlation between skeletal weathering and DNA quality and quantity. J Forensic Sci 54(4):822–828

    CAS  PubMed  Google Scholar 

  54. Templeton JE, Linacre A (2014) DNA profiles from fingermarks. Biotechniques 57(5):259–266

    CAS  PubMed  Google Scholar 

  55. Templeton JE et al (2015) Direct PCR improves the recovery of DNA from various substrates. J Forensic Sci 60(6):1558–1562

    CAS  PubMed  Google Scholar 

  56. Tonkrongjun P, Phetpeng S, Asawutmangkul W, Sotthibandhu S, Kitpipit T, Thanakiatkrai P (2019) Improved STR profiles from improvised explosive device (IED): fluorescence latent DNA detection and direct PCR. Forensic Sci Int Genet 41:168–176

    CAS  PubMed  Google Scholar 

  57. Wilson-Wilde L, Pitman F (2017) Legislative and policy implications for the use of rapid DNA technology in the Australian context. Forensic Science Policy & Management: An International Journal 8:1–12

    Google Scholar 

  58. Latham KE, Bartelink EJ, Finnegan M (2017) New perspectives in forensic human skeletal identification. In: Bone histology as an integrated tool in the process of human identification. Sara Tenney, United Kingdom, p 374

    Google Scholar 

  59. Mundorff AZ, Davoren JM, Weitz S (2012) Developing an empirically based ranking order for bone sampling: examining the differential DNA yield rates between human skeletal elements over increasing post mortem intervals. Available from: https://www.ncjrs.gov/pdffiles1/nij/grants/241868.pdf. Accessed 11 June 2019

  60. Pilli E, Vai S, Caruso MG, D’Errico G, Berti A, Caramelli D (2018) Neither femur nor tooth: petrous bone for identifying archaeological bone samples via forensic approach. Forensic Sci Int 283:144–149

    CAS  PubMed  Google Scholar 

  61. Shved N, Haas C, Papageorgopoulou C, Akguel G, Paulsen K, Bouwman A, Warinner C, Rühli F (2014) Post mortem DNA degradation of human tissue experimentally mummified in salt. PLoS One 9(10):e110753

    PubMed  PubMed Central  Google Scholar 

  62. Bas H, Kleinert JM (1999) Anatomic variations in sensory innervation of the hand and digits. J Hand Surg Am 24(6):1171–1184

    CAS  PubMed  Google Scholar 

  63. Johnston E, Stephenson M (2016) DNA profiling success rates from degraded skeletal remains in Guatemala. J Forensic Sci 61(4):898–902

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Ph.D. Studies Thailand’s Education Hub for ASEAN Countries Scholarship 2015, Prince of Songkla University, and the Prince of Songkla University (grant no. SCI6201021S).

Author information

Authors and Affiliations

Authors

Contributions

Laila Hasap: data curation, investigation, visualization writing—original draft. Wilaiwan Chotigeat: supervision, writing—review and editing. Jintana Pradutkanchana: methodology, resources. Uraporn Vongvatcharanon: methodology, resources. Thitika Kitpipit: conceptualization, methodology, supervision, writing—review and editing. Phuvadol Thanakiatkrai: conceptualization, data curation, funding acquisition, methodology, supervision, writing—original draft; writing—review and editing.

Corresponding author

Correspondence to Phuvadol Thanakiatkrai.

Ethics declarations

All samples used in the study were obtained with permission from all relevant organizations. They were acquired and processed according to the approval of the Prince of Songkla University Ethical Committee (ethical approval no. REC 60-428-19-6).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 18 kb)

ESM 2

(PDF 403 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasap, L., Chotigeat, W., Pradutkanchana, J. et al. A novel, 4-h DNA extraction method for STR typing of casework bone samples. Int J Legal Med 134, 461–471 (2020). https://doi.org/10.1007/s00414-019-02232-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-019-02232-9

Keywords

Navigation