Skip to main content
Log in

Impulse force-measurement system

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Shock tunnels are important ground test facilities that can generate high-enthalpy flow. Flight velocity at a high Mach number can be simulated for aerodynamic testing of chemically reacting flows. However, the application of these tunnels is limited due to the only milliseconds-long test duration, especially for aerodynamic force measurement using traditional strain gauge balances. This study presents an impulse force-measurement system, which was used for a large-scale test model to measure its drag in a high-enthalpy shock tunnel with an approximately 3–7-ms test time. Force tests were conducted for a cone in the JF-10 high-enthalpy shock tunnel in the Institute of Mechanics, Chinese Academy of Sciences. An integrated design of the impulse force-measurement system was proposed for load measurement over a short duration, for which a recommended design criterion is that the measurement period be a minimum of twice the period corresponding to the lowest natural frequency of the measurement system. The current measurement technique breaks the limitations of the application of the conventional strain gauge balance. As an integrated measuring system, the impulse force-measurement system expands the structural design concept of strain gauge balances. The impulse force-measurement system performed well in the present tests. The test results show differences from the numerical simulations and some data obtained in a conventional wind tunnel. A preliminary analysis was performed on the real gas effects on the aerodynamic force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Arrington, P.J., Joiner, R.J., Henderson, A.J.: Longitudinal characteristics of several configurations at hypersonic mach numbers in conical and contoured nozzles. NASA TN D-2489 (1954)

  2. Bernstein, L.: Force measurement in short-duration hypersonic facilities. AGARDograph No. 214 (1975)

  3. Naumann, K., Ende, H., Mathieu, G., George, A.: Millisecond aerodynamic force measurement with side-jet model in the ISL shock tunnel. AIAA J. 31, 1068–1074 (1993). https://doi.org/10.2514/3.11730

    Article  Google Scholar 

  4. Naumann, K., Ende, H.: A novel technique for aerodynamic force measurement in shock tubes. International Congress on Instrumentation in Aerospace Simulation Facilities, Gottingen, West Germany, pp. 535–544 (1989). https://doi.org/10.1109/ICIASF.1989.77710

  5. Joarder, R., Jagadeesh, G.: A new free floating accelerometer balance system for force measurements in shock tunnels. Shock Waves 13, 409–412 (2003). https://doi.org/10.1007/s00193-003-0225-y

    Article  Google Scholar 

  6. Saravanan, S., Jagadeesh, G., Reddy, K.P.J.: Aerodynamic force measurement using 3-component accelerometer force balance system in a hypersonic shock tunnel. Shock Waves 18, 425–435 (2009). https://doi.org/10.1007/s00193-008-0172-8

    Article  Google Scholar 

  7. Sahoo, N., Mahapatra, D.R., Jagadeesh, G., Gopalakrishnan, S., Reddy, K.P.J.: An accelerometer balance system for measurement of aerodynamic force coefficients over blunt bodies in a hypersonic shock tunnel. Meas. Sci. Technol. 14, 260–272 (2003). https://doi.org/10.1088/0957-0233/14/3/303

    Article  Google Scholar 

  8. Robinson, M.J., Schramm, J.M., Hannemann, K.: Design and implementation of an internal stress wave force balance in a shock tunnel. CEAS Space J. 1, 45–57 (2011). https://doi.org/10.1007/s12567-010-0003-5

    Article  Google Scholar 

  9. Sanderson, S.R., Simmons, J.M., Tuttle, S.L.: A drag measurement technique for free-piston shock tunnels. 29th Aerospace Sciences Meeting, Reno, NV, U.S.A., AIAA Paper 91-0549 (1991). https://doi.org/10.2514/6.1991-549

  10. Mee, D.J., Daniel, W.J.T., Simmons, J.M.: Three-component force balance for flows of millisecond duration. AIAA J. 34(3), 590–595 (1996). https://doi.org/10.2514/3.13108

    Article  Google Scholar 

  11. Seiler, F., Mathieu, G., George, A., Srulijes, J., Havermann, M.: Development of a free flight force measuring technique (FFM) at the ISL shock tube laboratory. 25th International Symposium on Shock Wave, Bangalore, India (2005)

  12. Wey, P., Bastide, M., Martinez, B., Srulijes, J., Gnemmi, P.: Determination of aerodynamic coefficients from shock tunnel free-flight trajectories. 28th Aerodynamic Measurement Technology, Ground Testing, and Flight Testing Conference, New Orleans, USA, AIAA Paper 2012-3321 (2012). https://doi.org/10.2514/6.2012-3321

  13. Martinez, B., Bastide, M., Wey, P.: Free-flight measurement technique in shock tunnel. Proceedings of the 30th Aerodynamic Measurement Technology and Ground Testing Conference, Atlanta, USA, AIAA Paper 2014–2523 (2014). https://doi.org/10.2514/6.2014-2523

  14. Tanno, H., Komuro, T., Sato, K., Fujita, K., Laurence, S.J.: Free-flight measurement technique in the free-piston shock tunnel hiest. Rev. Sci. Instrum. 85, 045112 (2014). https://doi.org/10.1063/1.4870920

    Article  Google Scholar 

  15. Tanno, H., Komuro, T., Sato, K., Itoh, K., Yamada, T.: Free-flight tests of reentry capsule models in free-piston shock tunnel. 43rd Fluid Dynamics Conference, San Diego, CA, AIAA Paper 2013-2979 (2013). https://doi.org/10.2514/6.2013-2979

  16. Laurence, S.J., Karl, S.: An improved visualization-based force-measurement technique for short-duration hypersonic facilities. Exp. Fluids 48, 949–965 (2010). https://doi.org/10.1007/s00348-009-0780-9

    Article  Google Scholar 

  17. Marineau, E., MacLean, M., Mundy, E., Holden, M.: Force measurements in hypervelocity flows with an acceleration compensated strain gage balance. J. Spacecr. Rockets 49(3), 474–482 (2012). https://doi.org/10.2514/1.A32041

    Article  Google Scholar 

  18. Wang, Y.P., Liu, Y.F., Luo, C.T., Jiang, Z.L.: Force measurement using strain-gauge balance in a shock tunnel with long test duration. Rev. Sci. Instrum. 87, 055108 (2016). https://doi.org/10.1063/1.4950781

    Article  Google Scholar 

  19. Wang, Y.P., Liu, Y.F., Jiang, Z.L.: Design of a pulse-type strain gauge balance for a long-test-duration hypersonic shock tunnel. Shock Waves 26(6), 835–844 (2016). https://doi.org/10.1007/s00193-015-0616-x

    Article  Google Scholar 

  20. Jiang, Z., Yu, H.: Theories and technologies for duplicating hypersonic flight conditions for ground testing. Natl. Sci. Rev. 4, 290–296 (2017). https://doi.org/10.1093/nsr/nwx007

    Article  Google Scholar 

  21. Jiang, Z., Zhao, W., Wang, C., Takayama, K.: Forward-running detonation drivers for high-enthalpy shock tunnels. AIAA J. 40, 2009–2016 (2002). https://doi.org/10.2514/2.1533

    Article  Google Scholar 

  22. Jiang, Z., Chang, L., Zhang, F.: Dynamic characteristics of spherically converging detonation waves. Combust. Flame 16, 253–267 (2007). https://doi.org/10.1007/s00193-006-0066-6

    Article  MATH  Google Scholar 

  23. Stalker, R.: Modern developments in hypersonic wind tunnels. Aeronaut. J. 110(1103), 21–39 (2006). https://doi.org/10.1017/S0001924000004346

    Article  Google Scholar 

  24. Holden, M.: Design, development and calibration of the lens facility. AFOSR-TR 94–0161 (1994)

  25. Holden, M.: Recent advances in hypersonic test facilities and experimental research. AIAA/DGLR 5th International Aerospace Planes and Hypersonics Technologies Conference, Munich, Germany, AIAA Paper 93-5005 (1993). https://doi.org/10.2514/6.1993-5005

  26. Rose, P.H.: Development of the calorimeter heat transfer gauge for use in shock tubes. Rev. Sci. Instrum. 29(7), 557–564 (1958). https://doi.org/10.1063/1.1716258

    Article  Google Scholar 

  27. Stalker, R.: A study of the free-piston shock tunnel. AIAA J. 5(12), 2160–2165 (1967). https://doi.org/10.2514/3.4402

    Article  Google Scholar 

  28. Stalker, R.J.: Shock tunnel for real gas hypersonics. Aerodynamics of Hypersonic Lifting Vehicles, AGARD Conference Proceedings No. 428, Bangalore, India (1987)

  29. Yu, H.R., Esser, B., Lenartz, M., Gronig, H.: Gaseous detonation driver for a shock tunnel. Shock Waves 2, 245–254 (1992). https://doi.org/10.1007/BF01414760

    Article  Google Scholar 

  30. Zhao, W., Jiang, Z.L., Saito, T., Lin, J., Yu, H., Takayama, K.: Performance of a detonation driven shock tunnel. Shock Waves 14(1–2), 53–59 (2005). https://doi.org/10.1007/s00193-004-0238-1

    Article  Google Scholar 

  31. Jiang, Z., Lin, J., Zhao, W.: Performance tests of JF-10 high-enthalpy shock tunnel with a FDC driver. Int. J. Hypersonics 2(1), 29–36 (2012). https://doi.org/10.1260/1759-3107.2.1.29

    Article  Google Scholar 

  32. Grabau, M., Smithson, H.K., Little, W.J.: A data reduction program for hotshot tunnels based on the Fay–Riddell heat transfer rate using nitrogen at stagnation temperatures from 1500 to 5000 K. Technical report AEDC- TDR-64-50 (1964)

  33. Simeonides, G.: Hypersonic shock wave boundary layer interactions over compression corners. PhD thesis, von Karman Institute for Fluid Dynamics, University of Bristol (1992). https://doi.org/10.12681/eadd/28688

  34. Hirschfelder, J.O., Buehler, R.J., McGee, H.A., Sutton, J.R.: Generalized equation of state for gases and liquids. Ind. Eng. Chem. 50, 375–385 (1958)

    Article  Google Scholar 

  35. Culotta, S., Enkenhus, K.R.: Analytical expressions for the thermo-dynamic properties of dense nitrogen. Technical note VKI-TN-50 (1968)

  36. Jiang, Z., Takayama, K., Chen, Y.: Dispersion conditions for non-oscillatory shock capturing schemes and its applications. Comput. Fluid Dyn. J. 4, 137–150 (1995)

    Article  Google Scholar 

  37. Jiang, Z.: On dispersion-controlled principles for non-oscillatory shock-capturing schemes. Acta Mech. Sin. 20, 1–15 (2004). https://doi.org/10.1007/BF02484239

    Article  MathSciNet  Google Scholar 

  38. Jiang, Z., Han, G., Wang, C., Zhang, F.: Self-organized generation of transverse waves in diverging cylindrical detonations. Combust. Flame 156, 1653–1661 (2009). https://doi.org/10.1016/j.combustflame.2009.02.012

    Article  Google Scholar 

  39. Jiang, Z., Takayama, K.: An investigation into the validation of numerical solutions of complex flow fields. J. Comput. Phys. 151, 479–497 (1999). https://doi.org/10.1006/jcph.1999.6186

    Article  MATH  Google Scholar 

  40. Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, U.S.A., AIAA Paper 92-0439 (1992). https://doi.org/10.2514/6.1992-439

  41. Luo, C.T., Wang, Y.P., Wang, C., Jiang, Z.L.: Wave system fitting: a new method for force measurements in shock tunnels with long test duration. Mech. Syst. Signal Process. 62–63, 296–304 (2015). https://doi.org/10.1016/j.ymssp.2015.02.024

    Article  Google Scholar 

  42. Penland, J.A.: Aerodynamic force characteristics of a series of lifting cone and cone-cylinder configurations at M = 6.83 and angles of attack up to 130\(^{\circ }\). NASA TN D-840 (1961)

  43. Ladson, C., Blackstock, T.: Air-helium simulation of the aerodynamic force coefficients of cones at hypersonic speeds. NASA TN D-1473 (1962)

  44. Zhang, H.: Hypersonic Aerodynamic Test. National Defense Industry Press, Beijing (2004)

    Google Scholar 

  45. Cheng, H.K.: Hypersonic shock-layer theory of a yawed cone and other three-dimensional pointed bodies. WADC TN 59–335 (1959)

  46. Cheng, H.K.: Hypersonic flows past a yawed circular cone and other pointed bodies. J. Fluid Mech. 12(2), 169–191 (1962). https://doi.org/10.1017/s0022112062000142

    Article  MathSciNet  MATH  Google Scholar 

  47. Ma, J., Tang, Z., Zhang, X.: Free flight method in hypersonic impulse type tunnels for static and dynamic stability study. Acta Aerodyn. Sin. 4, 82–90 (1983). (in Chinese)

    Google Scholar 

  48. Fluid Dynamics Panel Working Group 15. Quality assessment for wind tunnel testing. AGARD-AR-304 (1994)

  49. AIAA Standard: Assessment of experimental uncertainty with application to wind tunnel testing (AIAA S-071A-1999). American Institute of Aeronautics and Astronautics, VA, USA (1999). https://doi.org/10.2514/4.476648.001

  50. AIAA Guide: Assessing experimental uncertainty-supplement to AIAA S-071A-1999 (AIAA G-045-2003). American Institute of Aeronautics and Astronautics, VA, USA (2003). https://doi.org/10.2514/4.476648.001

  51. Anderson, J.D.: Hypersonic and High-Temperature Gas Dynamics, 2nd edn. American Institute of Aeronautics and Astronautics, Reston (2006). https://doi.org/10.2514/4.861956

    Book  Google Scholar 

  52. MacWherter, M., Noack, R.W., Oberkampf, W.L.: Evaluation of boundary-layer and parabolized Navier–Stokes solutions for re-entry vehicles. J. Spacecr. Rockets 23(1), 70–78 (1986). https://doi.org/10.2514/3.25085

    Article  Google Scholar 

  53. Yang, Y., Wang, F., Guo, D.: Force measurement of the cone with 10\(^{\circ }\) semivertex angle using a six-component balance system in the hypersonic impulse wind tunnel. Aerodyn. Exp. Meas. Control 2(1), 60–64 (1988). (in Chinese)

    Google Scholar 

  54. Koppenwallner, G.: Fundamentals of hypersonics: aerodynamics and heat transfer. VKI Short Course notes Hypersonic Aerothermodynamics (1984)

  55. Gray, J.D.: Summary report on aerodynamic characteristics of standard models hb-1 and hb-2. AEDC-TDR-64-137 (1964)

  56. Hirschel, E.H.: Basics of Aerothermodynamics. Springer, Berlin (2005). https://doi.org/10.1007/b137734

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11672357).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Wang.

Additional information

Communicated by F. Seiler.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Jiang, Z. Impulse force-measurement system. Shock Waves 30, 603–613 (2020). https://doi.org/10.1007/s00193-020-00971-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-020-00971-y

Keywords

Navigation