Skip to main content
Log in

Structure–property linkage in shocked multi-material flows using a level-set-based Eulerian image-to-computation framework

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Morphology and dynamics at the mesoscale play crucial roles in the overall macro- or system-scale flow of heterogeneous materials. In a multi-scale framework, closure models upscale unresolved sub-grid (mesoscale) physics and therefore encapsulate structure–property (S–P) linkages to predict performance at the macroscale. This work establishes a route to S–P linkage, proceeding all the way from imaged microstructures to flow computations in one unified level-set-based framework. Level sets are used to: (1) define embedded geometries via image segmentation; (2) simulate the interaction of sharp immersed boundaries with the flow field; and (3) calculate morphological metrics to quantify structure. Mesoscale dynamics is computed to calculate sub-grid properties, i.e., closure models for momentum and energy equations. The S–P linkage is demonstrated for two types of multi-material flows: interaction of shocks with a cloud of particles and reactive meso-mechanics of pressed energetic materials. We also present an approach to connect local morphological characteristics in a microstructure containing topologically complex features with the shock response of imaged samples of such materials. This paves the way for using geometric machine learning techniques to associate imaged morphologies with their properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Welle, E.J., Molek, C.D., Wixom, R.R., Samuels, P.: Microstructural effects on the ignition behavior of HMX. J. Phys Conf. Ser. 500, 052049 (2014). https://doi.org/10.1088/1742-6596/500/5/052049

    Article  Google Scholar 

  2. Tarver, C.M., Chidester, S.K., Nichols, A.L.: Critical conditions for impact- and shock-induced hot spots in solid explosives†. J. Phys. Chem. 100(14), 5794–5799 (1996). https://doi.org/10.1021/jp953123s

    Article  Google Scholar 

  3. Zhang, J., Jackson, T.L.: Effect of microstructure on the detonation initiation in energetic materials. Shock Waves 29(2), 327–338 (2017). https://doi.org/10.1007/s00193-017-0796-7

    Article  Google Scholar 

  4. Rai, N.K., Schmidt, M.J., Udaykumar, H.S.: High-resolution simulations of cylindrical void collapse in energetic materials: effect of primary and secondary collapse on initiation thresholds. Phys. Rev. Fluids 2(4), 043202 (2017). https://doi.org/10.1103/PhysRevFluids.2.043202

    Article  Google Scholar 

  5. Boiko, V.M., Kiselev, V.P., Kiselev, S.P., Papyrin, A.N., Poplavskii, S.V., Fomin, V.M.: Interaction of a shock wave with a cloud of particles. Combust. Explos. Shock Waves 32(2), 191–203 (1996). https://doi.org/10.1007/bf02097090

    Article  Google Scholar 

  6. Tay, T.E.: Characterization and analysis of delamination fracture in composites: an overview of developments from 1990 to 2001. Appl. Mech. Rev. 56(1), 1–32 (2003). https://doi.org/10.1115/1.1504848

    Article  MathSciNet  Google Scholar 

  7. Vyas, B., Preece, C.: Cavitation-induced deformation of aluminum. In: Thiruvengadam, A. (ed.) Erosion, Wear, and Interfaces with Corrosion, pp. 77–101. ASTM International, West Conshohocken, PA (1974). https://doi.org/10.1520/stp32221s

    Chapter  Google Scholar 

  8. Zaefferer, S., Ohlert, J., Bleck, W.: A study of microstructure, transformation mechanisms and correlation between microstructure and mechanical properties of a low alloyed TRIP steel. Acta Mater. 52(9), 2765–2778 (2004). https://doi.org/10.1016/j.actamat.2004.02.044

    Article  Google Scholar 

  9. Davies, G.A.O., Hitchings, D., Ankersen, J.: Predicting delamination and debonding in modern aerospace composite structures. Compos. Sci. Technol. 66(6), 846–854 (2006). https://doi.org/10.1016/j.compscitech.2004.12.043

    Article  Google Scholar 

  10. de Brauer, A., Rai, N.K., Nixon, M.E., Udaykumar, H.S.: Modeling impact-induced damage and debonding using level sets in a sharp interface Eulerian framework. Int. J. Numer. Methods Eng. 115(9), 1108–1137 (2018). https://doi.org/10.1002/nme.5837

    Article  MathSciNet  Google Scholar 

  11. Liu, Y.J., Li, S.J., Wang, H.L., Hou, W.T., Hao, Y.L., Yang, R., Sercombe, T.B., Zhang, L.C.: Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting. Acta Mater. 113, 56–67 (2016). https://doi.org/10.1016/j.actamat.2016.04.029

    Article  Google Scholar 

  12. Li, W., Hahn, E.N., Yao, X., Germann, T.C., Zhang, X.: Shock induced damage and fracture in SiC at elevated temperature and high strain rate. Acta Mater. 167, 51–70 (2019). https://doi.org/10.1016/j.actamat.2018.12.035

    Article  Google Scholar 

  13. Lieberman, E.J., Lebensohn, R.A., Menasche, D.B., Bronkhorst, C.A., Rollett, A.D.: Microstructural effects on damage evolution in shocked copper polycrystals. Acta Mater. 116, 270–280 (2016). https://doi.org/10.1016/j.actamat.2016.06.054

    Article  Google Scholar 

  14. Callister, W.D., Rethwisch, D.G.: Materials Science and Engineering: An Introduction. Wiley, New York (2007)

    Google Scholar 

  15. Olson, G.B.: Computational design of hierarchically structured materials. Science 277(5330), 1237–1242 (1997). https://doi.org/10.1126/science.277.5330.1237

    Article  Google Scholar 

  16. Nassar, A., Rai, N.K., Sen, O., Udaykumar, H.S.: Modeling mesoscale energy localization in shocked HMX, part I: machine-learned surrogate models for the effects of loading and void sizes. Shock Waves 29(4), 537–558 (2018). https://doi.org/10.1007/s00193-018-0874-5

    Article  Google Scholar 

  17. Sen, O., Rai, N.K., Diggs, A.S., Hardin, D.B., Udaykumar, H.S.: Multi-scale shock-to-detonation simulation of pressed energetic material: a meso-informed ignition and growth model. J. Appl. Phys. 124(8), 085110 (2018). https://doi.org/10.1063/1.5046185

    Article  Google Scholar 

  18. Roy, S., Rai, N.K., Sen, O., Hardin, D.B., Diggs, A.S., Udaykumar, H.S.: Modeling mesoscale energy localization in shocked HMX, Part II: training machine-learned surrogate models for void shape and void–void interaction effects. Shock Waves 30(4), 349–372 (2019). https://doi.org/10.1007/s00193-019-00931-1

    Article  Google Scholar 

  19. Rai, N.K., Udaykumar, H.S.: Three-dimensional simulations of void collapse in energetic materials. Phys. Rev. Fluids 3(3), 033201 (2018). https://doi.org/10.1103/PhysRevFluids.3.033201

    Article  Google Scholar 

  20. Sen, O., Gaul, N.J., Choi, K.K., Jacobs, G., Udaykumar, H.S.: Evaluation of kriging based surrogate models constructed from mesoscale computations of shock interaction with particles. J. Comput. Phys. 336, 235–260 (2017). https://doi.org/10.1016/j.jcp.2017.01.046

    Article  MathSciNet  Google Scholar 

  21. Zhao, L., Choi, K.K., Lee, I.: Metamodeling method using dynamic Kriging for design optimization. AIAA J. 49(9), 2034–2046 (2011). https://doi.org/10.2514/1.J051017

    Article  Google Scholar 

  22. Sen, O., Gaul, N.J., Choi, K.K., Jacobs, G., Udaykumar, H.S.: Evaluation of multifidelity surrogate modeling techniques to construct closure laws for drag in shock–particle interactions. J. Comput. Phys. 371, 434–451 (2018). https://doi.org/10.1016/j.jcp.2018.05.039

    Article  MathSciNet  Google Scholar 

  23. Kapahi, A., Mousel, J., Sambasivan, S., Udaykumar, H.S.: Parallel, sharp interface Eulerian approach to high-speed multi-material flows. Comput. Fluids 83, 144–156 (2013). https://doi.org/10.1016/j.compfluid.2012.06.024

    Article  MathSciNet  MATH  Google Scholar 

  24. Baer, M.: Modeling heterogeneous energetic materials at the mesoscale. Thermochim. Acta 384(1–2), 351–367 (2002)

    Article  Google Scholar 

  25. Provatas, N., Grant, M., Elder, K.R.: Phase-field model for activated reaction fronts. Phys. Rev. B: Condens. Matter 53(10), 6263–6272 (1996). https://doi.org/10.1103/physrevb.53.6263

    Article  Google Scholar 

  26. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988). https://doi.org/10.1016/0021-9991(88)90002-2

    Article  MathSciNet  MATH  Google Scholar 

  27. Dillard, S., Buchholz, J., Vigmostad, S., Kim, H., Udaykumar, H.S.: Techniques to derive geometries for image-based Eulerian computations. Eng. Comput. (Swansea) 31(3), 530–566 (2014). https://doi.org/10.1108/EC-06-2012-0145

    Article  Google Scholar 

  28. Dillard, S.I., Mousel, J.A., Shrestha, L., Raghavan, M.L., Vigmostad, S.C.: From medical images to flow computations without user-generated meshes. Int. J. Numer. Method Biomed. Eng. 30(10), 1057–1083 (2014). https://doi.org/10.1002/cnm.2644

    Article  Google Scholar 

  29. Rai, N.K., Udaykumar, H.S.: Mesoscale simulation of reactive pressed energetic materials under shock loading. J. Appl. Phys. 118(24), 245905 (2015). https://doi.org/10.1063/1.4938581

    Article  Google Scholar 

  30. Rai, N.K., Kapahi, A., Udaykumar, H.S.: Treatment of contact separation in Eulerian high-speed multimaterial dynamic simulations. Int. J. Numer. Methods Eng. 100(11), 793–813 (2014). https://doi.org/10.1002/nme.4760

    Article  MathSciNet  MATH  Google Scholar 

  31. Kapahi, A., Sambasivan, S., Udaykumar, H.S.: A three-dimensional sharp interface Cartesian grid method for solving high speed multi-material impact, penetration and fragmentation problems. J. Comput. Phys. 241, 308–332 (2013). https://doi.org/10.1016/j.jcp.2013.01.007

    Article  MathSciNet  MATH  Google Scholar 

  32. Das, P., Sen, O., Jacobs, G., Udaykumar, H.S.: A sharp interface Cartesian grid method for viscous simulation of shocked particle-laden flows. Int. J. Comput. Fluid Dyn. 31(6–8), 269–291 (2017). https://doi.org/10.1080/10618562.2017.1351610

    Article  MathSciNet  Google Scholar 

  33. Bostanabad, R., Zhang, Y., Li, X., Kearney, T., Brinson, L.C., Apley, D.W., Liu, W.K., Chen, W.: Computational microstructure characterization and reconstruction: review of the state-of-the-art techniques. Prog. Mater Sci. 95, 1–41 (2018). https://doi.org/10.1016/j.pmatsci.2018.01.005

    Article  Google Scholar 

  34. Torquato, S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer, Berlin (2013)

    MATH  Google Scholar 

  35. Whitehouse, W.J.: The quantitative morphology of anisotropic trabecular bone. J. Microsc. 101(Pt 2), 153–168 (1974). https://doi.org/10.1111/j.1365-2818.1974.tb03878.x

    Article  Google Scholar 

  36. Nakashima, Y., Kamiya, S.: Mathematica programs for the analysis of three-dimensional pore connectivity and anisotropic tortuosity of porous rocks using X-ray computed tomography image data. J. Nucl. Sci. Technol. 44(9), 1233–1247 (2007). https://doi.org/10.1080/18811248.2007.9711367

    Article  Google Scholar 

  37. Royet, J.P.: Stereology: a method for analyzing images. Prog. Neurobiol. 37(5), 433–474 (1991). https://doi.org/10.1016/0301-0082(91)90009-p

    Article  Google Scholar 

  38. Katuwal, S., Arthur, E., Tuller, M., Moldrup, P., de Jonge, L.W.: Quantification of soil pore network complexity with x-ray computed tomography and gas transport measurements. Soil Sci. Soc. Am. J. 79(6), 1577–1589 (2015). https://doi.org/10.2136/sssaj2015.06.0227

    Article  Google Scholar 

  39. Azegrouz, H., Trucco, E., Dhillon, B., MacGillivray, T., MacCormick, I.: Thickness dependent tortuosity estimation for retinal blood vessels. In: 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, USA, pp. 4675–4678 (2006). https://doi.org/10.1109/IEMBS.2006.260558

  40. Cowin, S.C.: The relationship between the elasticity tensor and the fabric tensor. Mech. Mater. 4(2), 137–147 (1985). https://doi.org/10.1016/0167-6636(85)90012-2

    Article  Google Scholar 

  41. Gundersen, H.J.G., Jensen, E.B.: Particle sizes and their distributions estimated from line- and point-sampled intercepts. Including graphical unfolding. J. Microsc. 131(3), 291–310 (1983). https://doi.org/10.1111/j.1365-2818.1983.tb04256.x

    Article  Google Scholar 

  42. Odgaard, A.: Three-dimensional methods for quantification of cancellous bone architecture. Bone 20(4), 315–328 (1997). https://doi.org/10.1016/s8756-3282(97)00007-0

    Article  Google Scholar 

  43. Odgaard, A., Jensen, E.B., Gundersen, H.J.: Estimation of structural anisotropy based on volume orientation. A new concept. J. Microsc. 157(Pt 2), 149–162 (1990). https://doi.org/10.1111/j.1365-2818.1990.tb02955.x

    Article  Google Scholar 

  44. Wang, M.Y., Wang, X., Guo, D.: A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192(1–2), 227–246 (2003). https://doi.org/10.1016/s0045-7825(02)00559-5

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang, M.Y., Wang, X.: A level set based variational method for design and optimization of heterogeneous objects. Comput. Aided Des. 37(3), 321–337 (2005). https://doi.org/10.1016/j.cad.2004.03.007

    Article  Google Scholar 

  46. Schmähling, J.: Statistical characterization of technical surface microstructure. PhD Thesis, Heidelberg University (2006). https://archiv.ub.uni-heidelberg.de/volltextserver/6792/1/schmaehling_06_statistical.pdf

  47. Jørgensen, P.S., Hansen, K.V., Larsen, R., Bowen, J.R.: High accuracy interface characterization of three phase material systems in three dimensions. J. Power Sources 195(24), 8168–8176 (2010). https://doi.org/10.1016/j.jpowsour.2010.06.083

    Article  Google Scholar 

  48. Moës, N., Cloirec, M., Cartraud, P., Remacle, J.-F.: A computational approach to handle complex microstructure geometries. Comput. Methods Appl. Mech. Eng. 192(28–30), 3163–3177 (2003)

    Article  Google Scholar 

  49. Sambasivan, S., Kapahi, A., Udaykumar, H.S.: Simulation of high speed impact, penetration and fragmentation problems on locally refined Cartesian grids. J. Comput. Phys. 235, 334–370 (2013). https://doi.org/10.1016/j.jcp.2012.10.031

    Article  MathSciNet  MATH  Google Scholar 

  50. Sen, O., Davis, S., Jacobs, G., Udaykumar, H.S.: Evaluation of convergence behavior of metamodeling techniques for bridging scales in multi-scale multimaterial simulation. J. Comput. Phys. 294, 585–604 (2015). https://doi.org/10.1016/j.jcp.2015.03.043

    Article  MathSciNet  MATH  Google Scholar 

  51. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001). https://doi.org/10.1109/83.902291

    Article  MATH  Google Scholar 

  52. Yu, Y., Acton, S.T.: Speckle reducing anisotropic diffusion. IEEE Trans. Image Process. 11(11), 1260–1270 (2002). https://doi.org/10.1109/TIP.2002.804276

    Article  MathSciNet  Google Scholar 

  53. Molek, C., Welle, E., Wixom, R., Ritchey, M., Samuels, P., Horie, Y.: Microstructural characterization of pressed HMX material sets at differing densities. AIP Publ. 1793(1), 040007 (2017). https://doi.org/10.1063/1.4971501

    Article  Google Scholar 

  54. Herrmann, M.: A parallel Eulerian interface tracking/Lagrangian point particle multi-scale coupling procedure. J. Comput. Phys. 229(3), 745–759 (2010). https://doi.org/10.1016/j.jcp.2009.10.009

    Article  MATH  Google Scholar 

  55. Harrigan, T.P., Mann, R.W.: Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J. Mater. Sci. 19(3), 761–767 (1984). https://doi.org/10.1007/bf00540446

    Article  Google Scholar 

  56. Jones, K.B., Inoue, N., Tis, J.E., McCarthy, E.F., McHale, K.A., Chao, E.Y.: Quantification of the microstructural anisotropy of distraction osteogenesis in the rabbit tibia. Iowa Orthop J. 25, 118–122 (2005)

    Google Scholar 

  57. Lock, A.C.H., Brown, A.D., Blessington, R.A., Appleby-Thomas, G., Quadir, M.Z., Hazell, P.J., Escobedo, J.P.: Effect of microstructural anisotropy on the dynamic mechanical behaviour of rolled Ti-6Al-4V. In: Ikhmayies, S.J. et al. (eds.) Characterization of Minerals, Metals, and Materials 2016, pp. 3–10. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48210-1_1

    Chapter  Google Scholar 

  58. Moreno, R., Borga, M., Smedby, O.: Generalizing the mean intercept length tensor for gray-level images. Med. Phys. 39(7), 4599–4612 (2012). https://doi.org/10.1118/1.4730502

    Article  Google Scholar 

  59. Smit, Th.H., Schneider, E., Odgaard, A.: Star length distribution: a volume-based concept for the characterization of structural anisotropy. J. Microsc. 191(3), 249–257 (1998). https://doi.org/10.1046/j.1365-2818.1998.00394.x

    Article  Google Scholar 

  60. Odgaard, A., Kabel, J., van Rietbergen, B., Dalstra, M., Huiskes, R.: Fabric and elastic principal directions of cancellous bone are closely related. J. Biomech. 30(5), 487–495 (1997). https://doi.org/10.1016/s0021-9290(96)00177-7

    Article  Google Scholar 

  61. Moreno, R., Smedby, Ö., Borga, M.: On the Efficiency of the Mean Intercept Length Tensor. In: SSBA Symposium (2011). http://www.diva-portal.org/smash/get/diva2%3A533443/FULLTEXT01.pdf

  62. Liu, Y., Saha, P.K., Xu, Z.: Quantitative characterization of trabecular bone micro-architecture using tensor scale and multi-detector CT imaging. Med Image Comput Comput Assist Interv. 15(1), 124–131 (2012). https://doi.org/10.1007/978-3-642-33415-3_16

    Article  Google Scholar 

  63. Kanatani, K., Sugaya, Y., Kanazawa, Y.: Ellipse analysis and 3D computation of circles. In: Guide to 3D Vision Computation. Advances in Computer Vision and Pattern Recognition. Springer, Cham (2016)

    Chapter  Google Scholar 

  64. Gander, W., Golub, G.H., Strebel, R.: Least-squares fitting of circles and ellipses. Bit 34(4), 558–578 (1994). https://doi.org/10.1007/bf01934268

    Article  MathSciNet  MATH  Google Scholar 

  65. Diggle, P.J., Besag, J., Gleaves, J.T.: Statistical analysis of spatial point patterns by means of distance methods. Biometrics 32(3), 659–667 (1976). https://doi.org/10.2307/2529754

    Article  MATH  Google Scholar 

  66. Illian, J., Penttinen, A., Stoyan, H., Stoyan, D.: Statistical Analysis and Modelling of Spatial Point Patterns. Wiley, New York (2008)

    MATH  Google Scholar 

  67. Diggle, P.J.: Statistical Analysis of Spatial and Spatio-Temporal Point Patterns. Chapman and Hall/CRC, Cambridge (2013)

    Book  Google Scholar 

  68. Bringa, E.M., Rosolankova, K., Rudd, R.E., Remington, B.A., Wark, J.S., Duchaineau, M., Kalantar, D.H., Hawreliak, J., Belak, J.: Shock deformation of face-centred-cubic metals on subnanosecond timescales. Nat. Mater. 5(10), 805–809 (2006). https://doi.org/10.1038/nmat1735

    Article  Google Scholar 

  69. de Brauer, A., Udaykumar, H.S.: Influence of bulk and interfacial properties on shock compression of metal powders. I. Interaction of a pair of particles. J. Appl. Phys. 124(13), 134903 (2018). https://doi.org/10.1063/1.5030212

    Article  Google Scholar 

  70. Clennell, M.B.: Tortuosity: a guide through the maze. Geol. Soc. Lond. Spec. Publ. 122(1), 299–344 (1997). https://doi.org/10.1144/gsl.Sp.1997.122.01.18

    Article  Google Scholar 

  71. Zhang, T., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Commun. ACM 27(3), 236–239 (1984). https://doi.org/10.1145/357994.358023

    Article  Google Scholar 

  72. Jain, R., Kasturi, R., Schunck, B.G.: Machine Vision. McGraw-Hill, New York (1995)

    Google Scholar 

  73. Hinde, A.L., Miles, R.E.: Monte Carlo estimates of the distributions of the random polygons of the Voronoi tessellation with respect to a Poisson process. J. Stat. Comput. Simul. 10(3–4), 205–223 (2007). https://doi.org/10.1080/00949658008810370

    Article  MATH  Google Scholar 

  74. Tanaka, H., Hayashi, T., Nishi, T.: Digital image analysis of droplet patterns in polymer systems: point pattern. J. Appl. Phys. 65(12), 4480–4495 (1989). https://doi.org/10.1063/1.343266

    Article  Google Scholar 

  75. Tschopp, M., Wilks, G., Spowart, J.: Multi-scale characterization of orthotropic microstructures. Modell. Simul. Mater. Sci. Eng. 16(6), 065009 (2008). https://doi.org/10.1088/0965-0393/16/6/065009

    Article  Google Scholar 

  76. MATLAB and Statistics Toolbox Release 2015b. The MathWorks, Inc., Natick, Massachusetts

  77. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, New York (2009)

    MATH  Google Scholar 

  78. Kosinski, P.: On shock wave propagation in a branched channel with particles. Shock Waves 15(1), 13–20 (2006). https://doi.org/10.1007/s00193-005-0001-2

    Article  MATH  Google Scholar 

  79. Ling, Y., Wagner, J.L., Beresh, S.J., Kearney, S.P., Balachandar, S.: Interaction of a planar shock wave with a dense particle curtain: modeling and experiments. Phys. Fluids 24(11), 113301 (2012). https://doi.org/10.1063/1.4768815

    Article  Google Scholar 

  80. Parmar, M., Haselbacher, A., Balachandar, S.: Modeling of the unsteady force for shock–particle interaction. Shock Waves 19(4), 317–329 (2009). https://doi.org/10.1007/s00193-009-0206-x

    Article  MATH  Google Scholar 

  81. Yang, J., Kubota, T., Zukoski, E.E.: Applications of shock-induced mixing to supersonic combustion. AIAA J. 31(5), 854–862 (1993). https://doi.org/10.2514/3.11696

    Article  Google Scholar 

  82. Li, Y., Zhang, J., Fan, L.-S.: Numerical simulation of gas–liquid–solid fluidization systems using a combined CFD-VOF-DPM method: bubble wake behavior. Chem. Eng. Sci. 54(21), 5101–5107 (1999). https://doi.org/10.1016/s0009-2509(99)00263-8

    Article  Google Scholar 

  83. Shuai, W., Tianyu, Z., Guodong, L., Huilin, L., Liyan, S.: Multi-scale heat transfer in fluidized bed reactors by Eulerian CFD modeling. Fuel 139, 646–651 (2015). https://doi.org/10.1016/j.fuel.2014.09.027

    Article  Google Scholar 

  84. Mehta, Y., Neal, C., Salari, K., Jackson, T.L., Balachandar, S., Thakur, S.: Propagation of a strong shock over a random bed of spherical particles. J. Fluid Mech. 839, 157–197 (2018). https://doi.org/10.1017/jfm.2017.909

    Article  MathSciNet  MATH  Google Scholar 

  85. Mehta, Y., Neal, C., Jackson, T.L., Balachandar, S., Thakur, S.: Shock interaction with three-dimensional face centered cubic array of particles. Phys. Rev. Fluids 1(5), 054202 (2016). https://doi.org/10.1103/PhysRevFluids.1.054202

    Article  Google Scholar 

  86. Sen, O., Gaul, N.J., Davis, S., Choi, K.K., Jacobs, G., Udaykumar, H.S.: Role of pseudo-turbulent stresses in shocked particle clouds and construction of surrogate models for closure. Shock Waves 28(3), 579–597 (2018). https://doi.org/10.1007/s00193-017-0801-1

    Article  Google Scholar 

  87. Barua, A., Zhou, M.: A Lagrangian framework for analyzing microstructural level response of polymer-bonded explosives. Modell. Simul. Mater. Sci. Eng. 19(5), 055001 (2011). https://doi.org/10.1088/0965-0393/19/5/055001

    Article  Google Scholar 

  88. Jackson, T.L., Jost, A.M.D., Zhang, J., Sridharan, P., Amadio, G.: Multi-dimensional mesoscale simulations of detonation initiation in energetic materials with density-based kinetics. Combust. Theor. Model. 22(2), 291–315 (2017). https://doi.org/10.1080/13647830.2017.1401121

    Article  MathSciNet  Google Scholar 

  89. Moulard, H., Delclos, A., Kury, J.: The effect of RDX particle size on the shock sensitivity of cast PBX formulations: 2, Bimodal compositions. International Symposium on Pyrotechnics and Explosives, Beijing, China. United States: N. p. (1987). https://www.osti.gov/biblio/6079610-effect-rdx-particle-size-shock-sensitivity-cast-pbx-formulations-bimodal-compositions

  90. Borne, L., Patedoye, J.C., Spyckerelle, C.: Quantitative characterization of internal defects in RDX crystals. Propellants Explos. Pyrotech. 24(4), 255–259 (1999). https://doi.org/10.1002/(SICI)1521-4087(199908)24:4%3C255::AID-PREP255%3E3.0.CO;2-2

    Article  Google Scholar 

  91. van der Heijden, A.E.D.M., Bouma, R.H.B.: Crystallization and characterization of RDX, HMX, and CL-20. Cryst. Growth Des. 4(5), 999–1007 (2004). https://doi.org/10.1021/cg049965a

    Article  Google Scholar 

  92. Levesque, G.A., Vitello, P.: The effect of pore morphology on hot spot temperature. Propellants Explos. Pyrotech. 40(2), 303–308 (2015). https://doi.org/10.1002/prep.201400184

    Article  Google Scholar 

  93. Rai, N.K., Schmidt, M.J., Udaykumar, H.S.: Collapse of elongated voids in porous energetic materials: effects of void orientation and aspect ratio on initiation. Phys. Rev. Fluids 2(4), 043201 (2017). https://doi.org/10.1103/PhysRevFluids.2.043201

    Article  Google Scholar 

  94. Lee, E.L., Tarver, C.M.: Phenomenological model of shock initiation in heterogeneous explosives. Phys. Fluids 23(12), 2362–2372 (1980). https://doi.org/10.1063/1.862940

    Article  Google Scholar 

  95. Garcia, F., Vandersall, K.S., Tarver, C.M.: Shock initiation experiments with ignition and growth modeling on low density HMX. J. Phys. Conf. Ser. 500(5), 052048 (2014). https://doi.org/10.1088/1742-6596/500/5/052048

    Article  Google Scholar 

  96. Kumar Rai, N., Udaykumar, H.S.: An Eulerian level set-based framework for reactive meso‐scale analysis of heterogeneous energetic materials. In: Lanbert, D.E. et al. (eds.) Dynamic Damage and Fragmentation, pp. 387–416. Wiley (2019). https://www.wiley.com/en-us/Dynamic+Damage+and+Fragmentation-p-9781786304087

  97. Akiki, G., Jackson, T.L., Balachandar, S.: Pairwise interaction extended point-particle model for a random array of monodisperse spheres. J. Fluid Mech. 813, 882–928 (2017). https://doi.org/10.1017/jfm.2016.877

    Article  MathSciNet  MATH  Google Scholar 

  98. Lee Perry, W., Clements, B., Ma, X., Mang, J.T.: Relating microstructure, temperature, and chemistry to explosive ignition and shock sensitivity. Combust. Flame 190, 171–176 (2018). https://doi.org/10.1016/j.combustflame.2017.11.017

    Article  Google Scholar 

  99. Rai, N.K., Udaykumar, H.S.: Void collapse generated meso-scale energy localization in shocked energetic materials: non-dimensional parameters, regimes, and criticality of hotspots. Phys. Fluids 31(1), 016103 (2019). https://doi.org/10.1063/1.5067270

    Article  Google Scholar 

  100. Nichols, A., Tarver, C.M.: A statistical hot spot reactive flow model for shock initiation and detonation of solid high explosives. In: 12th International Detonation Symposium, San Diego, CA, UCRL-JC-145031. Lawrence Livermore National Lab, Livermore (2002)

  101. Menikoff, R.: Hot spot formation from shock reflections. Shock Waves 21(2), 141–148 (2011). https://doi.org/10.1007/s00193-011-0303-5

    Article  Google Scholar 

  102. Roy, S., Rai, N.K., Udaykumar, H.S.: Effect of local void morphology on the reaction initiation mechanism in the case of pressed HMX. In: Abstracts of 20th Biennial Conference of the APS Topical Group on Shock Compression of Condensed Matter, St. Louis, Missouri (2017). http://meetings.aps.org/link/BAPS.2017.SHOCK.M9.30

  103. Kondo, R., Yamakawa, S., Masuoka, Y., Tajima, S., Asahi, R.: Microstructure recognition using convolutional neural networks for prediction of ionic conductivity in ceramics. Acta Mater. 141, 29–38 (2017). https://doi.org/10.1016/j.actamat.2017.09.004

    Article  Google Scholar 

  104. Cecen, A., Dai, H., Yabansu, Y.C., Kalidindi, S.R., Song, L.: Material structure-property linkages using three-dimensional convolutional neural networks. Acta Mater. 146, 76–84 (2018). https://doi.org/10.1016/j.actamat.2017.11.053

    Article  Google Scholar 

  105. Menikoff, R., Sewell, T.D.: Constituent properties of HMX needed for mesoscale simulations. Combust. Theor. Model. 6(1), 103–125 (2006). https://doi.org/10.1088/1364-7830/6/1/306

    Article  MATH  Google Scholar 

  106. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. J. Comput. Phys. 83(1), 32–78 (1989). https://doi.org/10.1016/0021-9991(89)90222-2

    Article  MathSciNet  MATH  Google Scholar 

  107. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152(2), 457–492 (1999). https://doi.org/10.1006/jcph.1999.6236

    Article  MathSciNet  MATH  Google Scholar 

  108. Kapahi, A., Udaykumar, H.S.: Three-dimensional simulations of dynamics of void collapse in energetic materials. Shock Waves 25(2), 177–187 (2015). https://doi.org/10.1007/s00193-015-0548-5

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Air Force Research Laboratory Munitions Directorate (AFRL/RWML), Eglin AFB, under Contract Number FA8651-16-1-0005 (Program Manager: Angela Diggs).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Roy.

Additional information

Communicated by D. Frost.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

1.1 Governing equations and numerical method for mesoscale computations

The hyperbolic conservation laws for mass, momentum, and energy are solved:

$$ \begin{aligned} & \frac{\partial \rho }{\partial t} + \frac{{\partial \left( {\rho u_{i} } \right)}}{{\partial x_{i} }} = 0 \\ & \frac{{\partial \left( {\rho u_{i} } \right)}}{\partial t} + \frac{{\partial \left( {\rho u_{i} u_{j} + \sigma_{ij} } \right)}}{{\partial x_{j} }} = 0 \\ & \frac{{\partial \left( {\rho E} \right)}}{\partial t} + \frac{{\partial \left( {\rho u_{i} E + \sigma_{ij} u_{i} } \right)}}{{\partial x_{i} }} = \dot{\varepsilon } \\ \end{aligned} $$
(34)

Here, the density and velocity components of the material are denoted by \( \rho \) and \( u_{i} \), respectively. The total specific energy is \( E = e + \frac{1}{2}u_{i} u_{i} \), where \( e \) is the specific internal energy. The source term \( \dot{\varepsilon } \) in (34) is the rise in specific internal energy of the system due to heat released in the decomposition of solid HMX into gaseous reaction products. The quantity \( \sigma_{ij} \) is the Cauchy stress tensor and is given differently for the particle-laden gas flow computations and pressed energetic materials.

The stress tensor \( \sigma_{ij} \) is:

$$ \sigma_{ij} = \varSigma_{ij} - p\delta_{ij} $$
(35)

where \( p \) is the pressure and \( \varSigma_{ij} \) refers to the deviatoric components of the stress tensor. For the gas, the deviatoric components \( \varSigma_{ij} \) of the stress tensor are zero and an ideal gas equation of state is used to calculate the pressure:

$$ p = \rho e(\gamma - 1) $$
(36)

where \( \gamma \) is the specific heat ratio with a value of 1.4. For the solid energetic materials, the deviatoric stress tensor \( S_{ij} \) is evolved using the following evolution equation:

$$ \frac{{\partial \left( {\rho S_{ij} } \right)}}{\partial t} + \frac{{\partial \left( {\rho S_{ij} u_{k} } \right)}}{{\partial x_{k} }} + \rho S_{ik} \varOmega_{kj} - \rho \varOmega_{ik} S_{kj} = \rho G\left( {D_{ij}^{\text{d}} - D_{ij}^{\text{d,p}} } \right) $$
(37)

where \( D_{ij}^{\text{d}} \) is the deviatoric component of the strain rate tensor, \( \varOmega_{ij} \) is the spin tensor, \( D_{ij}^{{{\text{d}},{\text{p}}}} \) is the plastic component of the deviatoric strain rate tensor, and G is the shear modulus of the material. The component \( D_{ij}^{{{\text{d}},{\text{p}}}} \) is obtained using the radial return algorithm [41].

Pressure is obtained from the Birch–Murnaghan equation of state [105], which can be written in the general Mie-Gruneisen form as:

$$ p\left( {\rho ,e} \right) = p_{k} \left( \rho \right) + \rho \varGamma_{s} \left[ {e - e_{k} \left( \rho \right)} \right], $$
(38)

where

$$\begin{aligned} p_{k} \left( \rho \right) &= \frac{3}{2}K_{T0} \left[ {\left( {\frac{\rho }{{\rho_{0} }}} \right)^{ - 7/3} - \left( {\frac{\rho }{{\rho_{0} }}} \right)^{ - 5/3} } \right]\times\\ & \qquad\left[ 1 + \frac{3}{4}\left( {K_{T0}^{{\prime }} - 4} \right)\left[ {\left( {\frac{\rho }{{\rho_{0} }}} \right)^{ - 2/3} } - 1 \right] \right],\end{aligned} $$
(39)

The Birch–Murnaghan equation of state is solved to obtain the dilatational response, and the deviatoric response of HMX is obtained by modeling perfectly plastic response under shock loading (Table 3) [105]. Thermal softening caused due to melting of HMX under shock loading is modeled using the Kraut–Kennedy relation [105], \( T_{\text{m}} = T_{\text{m}0} \left( {1 + a\frac{{\Delta V}}{{V_{0} }}} \right) \), with model parameters provided in the work of Menikoff et al. [105]. Once the temperature exceeds the melting point of HMX, the deviatoric strength terms are set to zero. Furthermore, the specific heat of HMX is known to change significantly with temperature. The variation of specific heat is modeled as a function of temperature as suggested in [105]. The specific heat as a function of temperature is obtained from [105]. A three-step chemical decomposition model is applied for the chemical reaction of HMX [2]. A detailed description of the implementation is presented in the previous work [93]. Here, a brief overview of the reaction model and its implementation is provided.

Table 3 Constitutive properties of HMX used for the [105] for the mesoscale void collapse simulations

Chemical decomposition of HMX takes place in three steps involving four different species:

$$ \begin{aligned}& {\text{Reaction}}\,1\!: {\text{HMX}}\,\left( {{\text{C}}_{4} {\text{H}}_{8} {\text{N}}_{8} {\text{O}}_{8} } \right)\\ &\quad\to {\text{fragments}}\,\left( {{\text{CH}}_{2} {\text{NNO}}_{2} } \right) \end{aligned}$$
(40)
$$\begin{aligned} &{\text{Reaction}}\, 2\!:\\ &\quad {\text{fragments}}\,\left( {{\text{CH}}_{2} {\text{NNO}}_{2} } \right)\\ &\quad \to {\text{intermediate}}\,{\text{gases}}\, \left( {{\text{CH}}_{2} {\text{O}},{\text{N}}_{2} {\text{O}},{\text{HCN}},{\text{HNO}}_{2} } \right)\end{aligned} $$
(41)
$$\begin{aligned} &{\text{Reaction}}\, 3\!:\\ &\quad 2 \times {\text{intermediate}}\,{\text{gases}}\, \left( {{\text{CH}}_{2} {\text{O}},{\text{N}}_{2} {\text{O}},{\text{HCN}},{\text{HNO}}_{2} } \right)\\ &\quad \to {\text{final}}\,{\text{gases}}\, \left( {{\text{N}}_{2} ,{\text{H}}_{2} {\text{O}},{\text{CO}}_{2} ,{\text{CO}}} \right)\end{aligned} $$
(42)

The solid HMX (species 1, mass fraction \( Y_{1} \)) under high temperature decomposes into fragments (species 2, \( Y_{2} \)). The fragments are further decomposed to intermediate gases (species 3, \( Y_{3} \)) which are later converted to the final gases (species 4, \( Y_{4} \)) through exothermic reactions leading to high temperatures in the hotspot. In the absence of information about the equations of state for the intermediate and the final products, in this work, it is assumed that these intermediates and the products follow the same cold curves as the bulk material.

Species formed by the chemical decomposition of HMX are evolved in time using the following species conservation equation:

$$ \frac{{\partial \left( {\rho [Y_{k} ]} \right)}}{\partial t} + \frac{{\partial \left( {\rho u_{i} [Y_{k} ]} \right)}}{{\partial x_{i} }} = \dot{Y}_{k} $$
(43)

where \( Y_{k} \) corresponds to the mass fraction and \( \dot{Y}_{k} \)—to the mass production rate of the kth species. The change in temperature because of the chemical decomposition of HMX is calculated by solving the evolution equation:

$$ \rho C_{p} \dot{T} = \dot{Q}_{\text{R}} + k\Delta T $$
(44)

where \( \rho \) is the density of HMX, \( C_{p} \) is the specific heat of HMX, \( T \) is the temperature, \( k \) is the thermal conductivity of HMX, and \( \dot{Q}_{\text{R}} \) is the total heat release rate because of the chemical reaction. The values of \( C_{p} \), λ, and \( \dot{Q}_{\text{R}} \) are obtained from the work of Tarver et al. [2]. The source term in (34) is computed by setting \( \dot{\varepsilon } = C_{v} \dot{T} \), where \( C_{v} \) is the specific heat of HMX at constant volume.

Spatial discretization of the governing equations is performed on a fixed Cartesian grid using a third-order essentially non-oscillatory (ENO) scheme [106]. A third order Runge–Kutta scheme is used for explicit time marching. The computational domain contains objects in the form of particles in the case of gas–particle flows and voids in the case of pressed energetic materials. All interfaces between materials are delineated by a signed distance function or the level-set function \( \varphi \left( {\varvec{x},t} \right) \). The level set \( \varphi \left( {\varvec{x},t} \right) < 0 \) for regions in the interior of the objects and \( \varphi \left( {\varvec{x},t} \right) > 0 \) in the exterior and is defined in a narrow band for each interface [26]. If there are a total of \( N_{\text{obj}} \) objects in the domain, the level-set field for the \( l{\text{th}} \) object is given by a separate narrowband level-set field \( \varphi_{l} (\varvec{x},t) \). No-penetration boundary conditions are applied at interfaces between the gas and solid using the modified ghost fluid method (GFM) [107]; appropriate boundary conditions on free surfaces and crystal–crystal contact conditions for the pressed HMX problem are prescribed [108]. A detailed explanation of the numerical framework used for the mesoscale simulations can be found in previous works [10, 23, 29,30,31, 49].

Appendix 2

2.1 Spatial and temporal homogenization of QoIs for gas–particle flow

The spatially averaged drag \( \overline{{F_{\text{D}} }} (t^{*} ) \) is the mean drag experienced by all the particles in the domain. Details of the averaging methods can be found in previous work [86]. Here, \( t^{*} = \frac{t}{{t_{\text{ref}} }} \) and reference timescale \( t_{\text{ref}} = \frac{{l_{\text{ref}} }}{{u_{\text{s}} }} \), where \( l_{\text{ref}} \) is the reference length scale, and its value is 1.0 based on the dimensions of the square that contains the particle cluster (Fig. 9). The velocity \( u_{\text{s}} \) is the incident particle velocity of the shock. The spatially averaged drag coefficient \( \overline{{C_{\text{D}} }} (t^{*} ) \) in the cluster is:

$$ \overline{{C_{\text{D}} }} (t^{*} ) = \frac{{\overline{{F_{\text{D}} }} (t^{*} )}}{{\frac{1}{2}\rho_{\text{s}} u_{\text{s}}^{2} d_{\text{eq}} }} $$
(45)

where \( \rho_{\text{s}} \) is the density of static unshocked fluid, \( u_{\text{s}} \) is the particle velocity, and \( d_{\text{eq}} \) is the equivalent diameter of the particle cluster \( d_{\text{eq}} = \sqrt {\frac{4}{\pi }\varOmega \phi } \) in the domain with area \( \varOmega \) and volume fraction \( \phi \). The velocity fluctuations cause stresses in the gas phase, which appear as the pseudo-turbulent stress tensor, \( S_{ij} \), given by:

$$ S_{ij} (\varvec{x},t^{*} ) = \frac{{u_{i}^{{\prime }} (\varvec{x},t^{*} )\,u_{j}^{{\prime }} (\varvec{x},t^{*} )}}{{u_{\text{s}}^{2} }} $$
(46)

where \( u_{i}^{\prime } (\varvec{x},t^{*} ) \) is the velocity fluctuation field:

$$ u_{i}^{{\prime }} \left( {\varvec{x},t^{*} } \right) = u_{i} \left( {\varvec{x},t^{*} } \right) - \widetilde{u}_{\text{g} }\left( {t^{*} } \right) $$
(47)

and the Favre-averaged gas slip velocity \( \widetilde{u}_{\text{g}} (t^{*} ) \) is calculated as follows:

$$ \widetilde{u}_{\text{g} }\left( {t^{*} } \right) = \frac{{\mathop \int \nolimits_{\varOmega }^{ } \rho u_{\text{g}} {\text{d}}\varOmega }}{{\mathop \int \nolimits_{\varOmega }^{ } \rho {\text{d}}\varOmega }} $$
(48)

where \( \rho \) and \( u_{\text{g}} \) are the fluid phase density and velocity component, respectively.

The spatially-averaged pseudo-turbulent stress tensor \( \tilde{S}_{ij} (t^{*} ) \) is:

$$ \tilde{S}_{ij} \left( {t^{*} } \right) = \frac{{\mathop \int \nolimits_{\varOmega }^{ } \rho S_{ij} {\text{d}}\varOmega }}{{\mathop \int \nolimits_{\varOmega }^{ } \rho {\text{d}}\varOmega }} $$
(49)

The spatially averaged pseudo-turbulent kinetic energy (PTKE [86]), i.e., \( \widetilde{\text{PTKE}}(t^{*} ) \), is:

$$ \widetilde{\text{PTKE}}(t^{*} ) \equiv \tilde{S}_{ii} \left( {t^{*} } \right) $$
(50)

The temporal homogenization is performed over a time \( T^{*} \) beginning with the shock entering the cluster until the entire incident shock wave leaves the particle cluster. The spatiotemporally-averaged drag coefficient \( \left\langle {\overline{{C_{\text{D}} }} } \right\rangle \) is obtained as:

$$ \left\langle {\overline{{C_{\text{D}} }} } \right\rangle = \frac{{\mathop \int \nolimits_{{t^{*} = 0}}^{{t^{*} = T^{*} }} \overline{{C_{\text{D}} }} \left( {t^{*} } \right){\text{d}}t^{*} }}{{\mathop \int \nolimits_{{t^{*} = 0}}^{{t^{*} = T^{*} }} {\text{d}}t^{*} }} $$
(51)

The spatiotemporally-averaged pseudo-turbulent stress tensor \( \tilde{S}_{ij} \) is given by:

$$ \left\langle {\tilde{S}_{ij} } \right\rangle = \frac{{\mathop \int \nolimits_{{t^{*} = 0}}^{{t^{*} = T^{*} }} \tilde{S}_{ij} \left( {t^{*} } \right){\text{d}}t^{*} }}{{\mathop \int \nolimits_{{t^{*} = 0}}^{{t^{*} = T^{*} }} {\text{d}}t^{*} }} $$
(52)

And the spatiotemporal average of the PTKE, \( \left\langle {\widetilde{\text{PTKE}}} \right\rangle \), is defined as follows:

$$ \left\langle {\widetilde{\text{PTKE}}} \right\rangle \equiv \left\langle {\tilde{S}_{ii} } \right\rangle $$
(53)

Appendix 3

3.1 Spatial homogenization of QoIs in shocked HMX

The product species mass fraction is denoted by \( Y_{4} (x,t) \) and is evolved using the conservation equations for species (43). The rate of chemical decomposition of HMX within the entire domain is calculated by accumulating the mass of the final gaseous products via:

$$ M_{\text{reacted}} (t) = \mathop \int \limits_{{\varOmega_{ } }}^{ } \rho (\varvec{x},t) Y_{4} (\varvec{x},t) {\text{d}}\varOmega $$
(54)

\( M_{\text{reacted}} \) is calculated for the entire domain of area \( \varOmega \), and \( \rho \) is the local density. The burned fraction of HMX, \( F \), is the mass of the solid converted to reaction product gaseous species denoted by \( F \) which is useful to study the long-term behavior for a field of voids. The fraction of fully burned HMX to the total mass of HMX in the control volume is:

$$ F(t) = \frac{{M_{\text{reacted}} (t)}}{{M_{\text{HMX}} }} $$
(55)

where \( M_{\text{HMX}} \) is the total mass of HMX present in the control volume \( \varOmega_{ } \) prior to the start of chemical reactions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Rai, N.K., Sen, O. et al. Structure–property linkage in shocked multi-material flows using a level-set-based Eulerian image-to-computation framework. Shock Waves 30, 443–472 (2020). https://doi.org/10.1007/s00193-020-00947-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-020-00947-y

Keywords

Navigation