Skip to main content
Log in

Normal shock wave attenuation during propagation in ducts with grooves

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Experimental investigations and numerical simulations of normal shock waves of different strengths propagating inside ducts with roughness are presented. The roughness is added in the form of grooves. Straight and branching ducts are considered in order to better explore the mechanisms causing attenuation of the shock and the physics behind the evolution of the complex wave patterns resulting from diffraction and reflection of the primary moving shock. A well-established finite-volume numerical method is used and further validated for several test cases relevant to this study. The computed results are compared with experimental measurements in ducts with grooves. Good agreement between high-resolution simulations and the experiment is obtained for the shock speeds and complex wave patterns created by the grooves. High-frequency response time histories of pressure at various locations were recorded in the experiments. The recorded pressure histories and shock strengths were found in fair agreement with the two-dimensional simulation results as long as the shock stays in the duct. Overall, the physics of the interactions of the moving shock and the diffracted and reflected waves with the grooves are adequately captured in the high-resolution simulations. Therefore, shocks propagating in ducts with different groove geometries have been simulated in order to identify the groove shape that diminishes shock strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Obtained from [19]

Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54(1), 115–173 (1984). https://doi.org/10.1016/0021-9991(84)90142-6

    Article  MathSciNet  MATH  Google Scholar 

  2. Igra, O., Falcovitz, J., Reichenbach, H., Heilig, W.: Experimental and numerical study of the interaction between a planar shock wave and a square cavity. J. Fluid Mech. 313, 105–130 (1996). https://doi.org/10.1017/S0022112096002145

    Article  Google Scholar 

  3. Sun, M., Takayama, K.: The formation of a secondary shock wave behind a shock wave diffracting at a convex corner. Shock Waves 7(5), 287–295 (1997). https://doi.org/10.1007/s001930050083

    Article  MATH  Google Scholar 

  4. Igra, O., Wu, X., Falcovitz, J., Meguro, T., Takayama, K., Heilig, W.: Experimental and theoretical study of shock wave propagation through double-bend ducts. J. Fluid Mech. 437, 255–282 (2001). https://doi.org/10.1017/S0022112001004098

    Article  MATH  Google Scholar 

  5. Sun, M., Takayama, K.: Vorticity production in shock diffraction. J. Fluid Mech. 478, 237–256 (2003). https://doi.org/10.1017/S0022112002003403

    Article  MathSciNet  MATH  Google Scholar 

  6. Britan, A., Karpov, A., Vasilev, E., Igra, O., Ben-Dor, G., Shapiro, E.: Experimental and numerical study of shock wave interaction with perforated plates. J. Fluids Eng. 126(3), 399–409 (2004). https://doi.org/10.1115/1.1758264

    Article  Google Scholar 

  7. Hornung, H., Taylor, J.: Transition from regular to Mach reflection of shock waves. Part 1. The effect of viscosity in the pseudosteady case. J. Fluid Mech. 123, 143–153 (1982). https://doi.org/10.1017/S0022112082002997

    Article  Google Scholar 

  8. Jin, S., Liu, J.G.: The effects of numerical viscosities: I. Slowly moving shocks. J. Comput. Phys. 126(2), 373–389 (1996). https://doi.org/10.1006/jcph.1996.0144

    Article  MathSciNet  MATH  Google Scholar 

  9. Sun, M., Ogawa, T., Takayama, K.: Shock propagation in narrow channels. In: 23rd International Symposium on Shock Waves, Fort Worth, TX (2001)

  10. Movahed, M., Grönig, H.: Pressure wave damping in branched pipes with arbitrary angles. Int. J. Press. Vessels Pip. 23(3), 215–225 (1986). https://doi.org/10.1016/0308-0161(86)90020-7

    Article  Google Scholar 

  11. Ben-Dor, G.: Shock Wave Reflection Phenomena, 2nd edn. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-71382-1

  12. Onodera, H., Takayama, K.: Interaction of a plane shock wave with slitted wedges. Exp. Fluids 10(2–3), 109–115 (1990). https://doi.org/10.1007/BF00215018

    Article  Google Scholar 

  13. Skews, B.: Shock wave interaction with porous plates. Exp. Fluids 39(5), 875–884 (2005). https://doi.org/10.1007/s00348-005-0023-7

    Article  Google Scholar 

  14. Igra, O., Wu, X., Falcovitz, J., Meguro, T., Takayama, K., Helig, W.: Experimental and theoretical study of shock wave propagation through double-bend ducts. J. Fluid Mech. 437, 255–282 (2001). https://doi.org/10.1017/S0022112001004098

    Article  MATH  Google Scholar 

  15. Abe, A., Utsunomiya, G., Lee, J., Takayama, K.: Shock wave interaction with rigid porous baffle plates. In: 25th International Congress on High-Speed Photography and Photonics, Beaune, France, Proceedings Volume 4948 (2003). https://doi.org/10.1117/12.516811

  16. Igra, D., Igra, O.: Shock wave mitigation by different combination of plate barriers; a numerical investigation. Eur. J. Mech. B Fluids 59, 115–123 (2016). https://doi.org/10.1016/j.euromechflu.2016.05.002

    Article  MathSciNet  MATH  Google Scholar 

  17. Britan, A., Igra, O., Ben-Dor, G., Shapiro, H.: Shock wave attenuation by grids and orifice plates. Shock Waves 16(1), 1–15 (2006). https://doi.org/10.1007/s00193-006-0019-0

    Article  Google Scholar 

  18. Igra, D., Takayama, K., Igra, O.: Shock wave reflection over roughened wedges. In: 30th International Symposium on Shock Waves, Tel-Aviv, Israel, pp. 621–625 (2017). https://doi.org/10.1007/978-3-319-46213-4_106

    Chapter  Google Scholar 

  19. Gongora Orozco, N.: Experimental studies on internal shock wave phenomena and interactions. PhD Thesis, University of Manchester (2010)

  20. Gongora-Orozco, N., Zare-Behtash, H., Kontis, K.: Experimental studies on shock wave propagating through junction with grooves. 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, AIAA Paper 2009-327 (2009). https://doi.org/10.2514/6.2009-327

  21. Bassett, M.D.: Gas dynamics in the junctions of engine manifolds. PhD Thesis, University of Manchester (2003)

  22. Igra, O., Falcovitz, J.: Numerical solution to rarefaction or shock wave/duct area-change interaction. AIAA J. 24, 1390–1394 (1986). https://doi.org/10.2514/3.9453

    Article  Google Scholar 

  23. Gaydon, A.G., Hurle, I.R.: The Shock Tube in High-Temperature Chemical Physics. Chapman and Hall, London (1963)

    Google Scholar 

  24. Palacios, F., Colonno, M., Aranake, A., Campos, A., Copeland, S., Economon, T., Lonkar, A., Lukaczyk, T., Taylor, T., Alonso, J.: Stanford University Unstructured (SU\(^2\)): An open-source integrated computational environment for multi-physics simulation and design. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA Paper 2013-0287 (2013). https://doi.org/10.2514/6.2013-287

  25. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, Berlin (2013). https://doi.org/10.1007/b79761

    Book  Google Scholar 

  26. Zhang, S., Zhang, Y.T., Shu, C.W.: Interaction of an oblique shock wave with a pair of parallel vortices: Shock dynamics and mechanism of sound generation. Phys. Fluids 18(12), 126101 (2006). https://doi.org/10.1063/1.2391806

    Article  MATH  Google Scholar 

  27. Panourgias, K.T., Ekaterinaris, J.A.: A discontinuous Galerkin approach for high-resolution simulations of three-dimensional flows. Comput. Methods Appl. Mech. Eng. 299, 245–282 (2016). https://doi.org/10.1016/j.cma.2015.10.016

    Article  MathSciNet  MATH  Google Scholar 

  28. Panourgias, K.T., Ekaterinaris, J.A.: A nonlinear filter for high order discontinuous Galerkin discretizations with discontinuity resolution within the cell. J. Comput. Phys. 326, 234–257 (2016). https://doi.org/10.1016/j.jcp.2016.08.049

    Article  MathSciNet  MATH  Google Scholar 

  29. Skews, B.W.: The perturbed region behind a diffracting shock wave. J. Fluid Mech. 29(4), 705–719 (1967). https://doi.org/10.1017/S0022112067001132

    Article  Google Scholar 

  30. Bazhenova, T., Gvozdeva, L., Komarov, V., Sukhov, B.: Diffraction of strong shock waves by convex corners. Fluid Dyn. 8(4), 611–619 (1973). https://doi.org/10.1007/BF01013100

    Article  Google Scholar 

  31. Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995). https://doi.org/10.1017/S0022112095000462

    Article  MathSciNet  MATH  Google Scholar 

  32. Anderson, J.D.: Modern Compressible Flow: With Historical Perspective. McGraw-Hill, New York (1990)

    Google Scholar 

  33. Igra, O., Wang, L., Falcovitz, J., Heilig, W.: Shock wave propagation in a branched duct. Shock Waves 8(6), 375–381 (1998). https://doi.org/10.1007/s001930050130

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Vega high-performance cluster at ERAU for providing the computational resources to perform the simulation reported in the present paper. We would also like to acknowledge Nalleli Gongora-Orozco for the help and support during the experiment and the technical staff at the University of Manchester for manufacturing the required parts for the shock tube.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Mortazawy.

Additional information

Communicated by O. Igra and A. Higgins.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mortazawy, S.M., Kontis, K. & Ekaterinaris, J. Normal shock wave attenuation during propagation in ducts with grooves. Shock Waves 30, 91–113 (2020). https://doi.org/10.1007/s00193-019-00916-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-019-00916-0

Keywords

Navigation