Skip to main content
Log in

On the response of annular injectors to rotating detonation waves

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

A series of three-dimensional, unsteady simulations have been conducted to illuminate the behavior of annular gaseous injectors that are frequently used in rotating detonation engine combustors. The strength (detonation overpressure history) and number of detonation waves in the combustor are investigated as operational parameters along with the injector design (area ratio and length) to assess the impact on the unsteady response of the injection system to the imposed detonation model. Attenuation of the imposed overpressure and reflection off the assumed mass flow inlet boundary are features that are highlighted. The unsteady flow at the exit of the injector as a result of these interactions is found to fluctuate by \(+\) 80 to − 200%. Strong wave attenuation in the near-exit region of the injector is observed, but acoustic perturbations are seen to propagate throughout the injector, which along with the corresponding reflections persist during the transient injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nordeen, C.A., Schwer, D., Schauer, F., Hoke, J., Barber, T., Cetegen, B.M.: Role of inlet reactant mixedness on the thermodynamic performance of a rotating detonation engine. Shock Waves 26, 417–428 (2016). https://doi.org/10.1007/s00193-015-0570-7

    Article  Google Scholar 

  2. Wintenberger, E., Shepherd, J.E.: Thermodynamic cycle analysis for propagating detonations. J. Propuls. Power 22(3), 694–697 (2006). https://doi.org/10.2514/1.12775

    Article  Google Scholar 

  3. Stechmann, D.P.: Experimental study of high-pressure rotating detonation combustion in rocket environments. PhD Thesis, Purdue University (2017)

  4. Nicholls, J.A., Cullen, R.E., Ragland, K.W.: Feasibility studies of a rotating detonation wave rocket motor. J. Spacecr. Rockets 3(6), 893–898 (1966). https://doi.org/10.2514/3.28557

    Article  Google Scholar 

  5. Voitsekhovskii, B.V., Mitrofanov, V.V., Topchiyan, M.E.: Structure of the detonation front in gases (survey). Combust. Explos. Shock Waves 5(3), 385–395 (1969). https://doi.org/10.1007/BF00748606

    Article  Google Scholar 

  6. Stechmann, D., Heister, S.D., Sardeshmukh, S.: High-pressure rotating detonation engine testing and flameholding analysis with hydrogen and natural gas. 55th AIAA Aerospace Sciences Meeting AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Paper 2016-5099 (2017). https://doi.org/10.2514/6.2016-5099

  7. Shank, J.C., King, P.I., Karnesky, J., Schauer, F.R., Hoke, J.L.: Development and testing of a modular rotating detonation engine. 50th AIAA Aerospace Sciences Meeting, AIAA Paper 2012-0120 (2012). https://doi.org/10.2514/6.2012-120

  8. Yao, S., Wang, J.: Multiple ignitions and the stability of rotating detonation waves. Appl. Therm. Eng. 108, 927–936 (2016). https://doi.org/10.1016/j.applthermaleng.2016.07.166

    Article  Google Scholar 

  9. Chenglong, Y., Hu, M., Xiaosong, W., Xueyang, X.: A computational and experimental study of injection structure effect on \(\text{H}_2\)-air rotating detonation engine. 52nd AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Paper 2016-4571 (2016). https://doi.org/10.2514/6.2016-4571

  10. Cocks, P.A., Holley, A.T., Rankin, B.A.: High fidelity simulations of a non-premixed rotating detonation engine. 54th AIAA Aerospace Sciences Meeting, AIAA Paper 2016-0125 (2016). https://doi.org/10.2514/6.2016-0125

  11. Cocks, P.A.T., Holley, A.T., Greene, C.B., Haas, M.: Development of a high fidelity RDE simulation capability. 53rd AIAA Aerospace Sciences Meeting, AIAA Paper 2015-1823 (2015). https://doi.org/10.2514/6.2015-1823

  12. Frolov, S.M., Dubrovskii, A.V., Ivanov, V.S.: Three-dimensional numerical simulation of the operation of the rotating-detonation chamber. Russ. J. Phys. Chem. B 7(1), 276–288 (2012). https://doi.org/10.1134/S1990793112010071

    Article  Google Scholar 

  13. Frolov, S.M., Dubrovsky, A.V., Ivanov, V.S.: Three-dimensional numerical simulation of a continuously rotating detonation in the annular combustion chamber with a wide gap and separate delivery of fuel and oxidizer. Prog. Propuls. Phys. 8, 375–388 (2016). https://doi.org/10.1051/eucass/201608375

    Article  Google Scholar 

  14. Schwer, D., Kailasanath, K.: Effect of Inlet on Fill Region and Performance of Rotating Detonation Engines. 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper 2011-6044 (2011). https://doi.org/10.2514/6.2011-6044

  15. Schwer, D.A., Kailasanath, K.: Feedback into mixture plenums in rotating detonation engines. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA Paper 2012-617 (2012). https://doi.org/10.2514/6.2012-617

  16. Schwer, D.A., Kailasanath, K.: On reducing feedback pressure in rotating detonation engines. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA Paper 2013-1178 (2013). https://doi.org/10.2514/6.2013-1178

  17. Strakey, P., Ferguson, D., Sisler, A., Nix, A.: Computationally quantifying loss mechanisms in a rotating detonation engine. 54th AIAA Aerospace Sciences Meeting, AIAA Paper 2016-0900 (2016). https://doi.org/10.2514/6.2016-0900

  18. Schwer, D.A., Kaemming, T.A., Kailasanath, K.: Pressure feedback in the diffuser of a ram-RDE propulsive device. 55th AIAA Aerospace Sciences Meeting, AIAA Paper 2017-1061 (2017). https://doi.org/10.2514/6.2017-1061

  19. Choi, Y.H., Merkle, C.L.: The application of preconditioning in viscous flows. J. Comput. Phys. 105(2), 207–223 (1993). https://doi.org/10.1006/jcph.1993.1069

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, D., Sankaran, V., Lindau, J., Merkle, C.: A unified computational formulation for multi-component and multi-phase flows. 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper, 2005-1391 (2005). https://doi.org/10.2514/6.2005-1391

  21. Venkateswaran, S., Merkle, C.L.: Analysis of preconditioning methods for the Euler and the Navier–Stokes equations. Technical Report, Von Karman Institute for Fluid Dynamics (1999)

  22. Lian, C., Xia, G., Merkle, C.: Solution-limited time stepping to enhance reliability in CFD applications. J. Comput. Phys. 228(13), 4836–4857 (2009). https://doi.org/10.1016/j.jcp.2009.03.040

    Article  MathSciNet  MATH  Google Scholar 

  23. Harvazinski, M.E.: Modeling self-excited combustion instabilities using a combination of two-and three-dimensional simulations. PhD Thesis, Purdue University (2012)

  24. Wilcox, D.C.: Formulation of the \(k\)-\(\omega \) turbulence model revisited. AIAA J. 46(11), 2823–2838 (2008). https://doi.org/10.2514/1.36541

    Article  Google Scholar 

  25. McBride, B.J., Gordon, S., Reno, M.A.: Coefficients for calculating thermodynamic and transport properties of individual species. NASA-TM-4513 (1993)

  26. Mathur, S., Tondon, P., Saxena, S.: Thermal conductivity of binary, ternary and quaternary mixtures of rare gases. Mol. Phys. 12(6), 569–579 (1967). https://doi.org/10.1080/00268976700100731

    Article  Google Scholar 

  27. Peng, L., Wang, D., Wu, X., Ma, H., Yang, C.: Ignition experiment with automotive spark on rotating detonation engine. Int. J. Hydrog. Energy 40(26), 8465–8474 (2015). https://doi.org/10.1016/j.ijhydene.2015.04.126

    Article  Google Scholar 

  28. Bykovskii, F.A., Zhdan, S.A., Vedernikov, E.F.: Continuous spin detonations. J. Propuls. Power 22(6), 1204–1216 (2006). https://doi.org/10.2514/1.17656

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dasheng Lim, Wesly Anderson, and Brandon Kan for technical discussions related to the RDEs and experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Mikoshiba.

Additional information

Communicated by A. Higgins.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikoshiba, K., Sardeshmukh, S.V. & Heister, S.D. On the response of annular injectors to rotating detonation waves. Shock Waves 30, 29–40 (2020). https://doi.org/10.1007/s00193-019-00900-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-019-00900-8

Keywords

Navigation