Skip to main content
Log in

Effects of injection conditions on the stability of rotating detonation waves

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

This article presents a numerical investigation of a rotating detonation engine (RDE). The simulation explores the instability mechanism of detonation waves in the RDE with micro-convergent-nozzle injection. The process is modeled by the two-dimensional reactive Euler equations with detailed chemical reaction kinetics for the injection of premixed stoichiometric hydrogen–air. The numerical results show an interesting instability phenomenon whereby an unstable detonation wave rotates circumferentially at the fuel injection head of the chamber. The shape of the fresh fuel layer is irregular, which is different from that in previous numerical simulations. The height and strength of the detonation wave are periodically fluctuating, as well as the mass flow rate of the reactants into the chamber. Based on the time evolution of the detonation wave, it is found that the detonation wave oscillates due to the interaction of fuel injection and weak transverse shock waves following the detonation wave. The detonation wave, the shape of the fresh fuel layer, and the mass flow rate influence each other. Therefore, this oscillation remains in the flow field, as does the instability of the detonation wave. This finding is in good agreement with previous experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Voitsekhovskii, B.V.: Stationary spin detonation. Dokl. Akad. Nauk SSSR 129, 1254–1256 (1959)

    Google Scholar 

  2. Bykovskii, F.A., Vedernikov, E.F.: Continuous detonation combustion of an annular gas-mixture layer. Combust. Explos. Shock Waves 32, 489–491 (1996). https://doi.org/10.1007/BF01998570

    Article  Google Scholar 

  3. Wolanski, P.: Rotating detonation wave stability. In: 23rd International Colloquium on the Dynamics of Explosions and Reactive Systems, Paper 211, Irvine, CA, USA (2011)

  4. Wolański, P.: Detonative propulsion. Proc. Combust. Inst. 34, 125–158 (2013). https://doi.org/10.1016/j.proci.2012.10.005

    Article  Google Scholar 

  5. Dubrovskii, A.V., Ivanov, V.S., Frolov, S.M.: Three-dimensional numerical simulation of the operation process in a continuous detonation combustor with separate feeding of hydrogen and air. Russ. J. Phys. Chem. B 9, 104–119 (2015). https://doi.org/10.1134/S1990793115010157

    Article  Google Scholar 

  6. Frolov, S.M., Aksenov, V.S., Ivanov, V.S., Shamshin, I.O.: Large-scale hydrogen–air continuous detonation combustor. Int. J. Hydrogen Energy 40, 1616–1623 (2015). https://doi.org/10.1016/j.ijhydene.2014.11.112

    Article  Google Scholar 

  7. Fotia, M.L., Schauer, F., Kaemming, T., Hoke, J.: Experimental study of the performance of a rotating detonation engine with nozzle. J. Propuls. Power 32, 674–681 (2016). https://doi.org/10.2514/1.B35913

    Article  Google Scholar 

  8. Schwer, D., Kailasanath, K.: Fluid dynamics of rotating detonation engines with hydrogen and hydrocarbon fuels. Proc. Combust. Inst. 34, 1991–1998 (2013). https://doi.org/10.1016/j.proci.2012.05.046

    Article  Google Scholar 

  9. Anand, V., St. George, A., Driscoll, R., Gutmark, E.: Characterization of instabilities in a rotating detonation combustor. Int. J. Hydrogen Energy 40, 16649–16659 (2015). https://doi.org/10.1016/j.ijhydene.2015.09.046

    Article  Google Scholar 

  10. Tsuboi, N., Watanabe, Y., Kojima, T., Hayashi, A.K.: Numerical estimation of the thrust performance on a rotating detonation engine for a hydrogen–oxygen mixture. Proc. Combust. Inst. 35, 2005–2013 (2015). https://doi.org/10.1016/j.proci.2014.09.010

    Article  Google Scholar 

  11. Fujii, J., Kumazawa, Y., Matsuo, A., Nakagami, S., Matsuoka, K., Kasahara, J.: Numerical investigation on detonation velocity in rotating detonation engine chamber. Proc. Combust. Inst. 36, 2665–2672 (2017). https://doi.org/10.1016/j.proci.2016.06.155

    Article  Google Scholar 

  12. Le Naour, B., Falempin, F., Coulon, K.: MBDA R&T effort regarding continuous detonation wave engine for propulsion—Status in 2016. 21st AIAA International Space Planes and Hypersonics Technologies Conference, Xiamen, China, AIAA Paper 2017-2325 (2017). https://doi.org/10.2514/6.2017-2325

  13. Hansmetzger, S., Zitoun, R., Vidal, P.: Detonation regimes in a small-scale RDE. In: 26rd International Colloquium on the Dynamics of Explosions and Reactive Systems, Boston, MA, USA (2017)

  14. Zhou, R., Wang, J.: Numerical investigation of shock wave reflections near the head ends of rotating detonation engines. Shock Waves 23, 461–472 (2013). https://doi.org/10.1007/s00193-013-0440-0

    Article  Google Scholar 

  15. Yao, S., Han, X., Liu, Y., Wang, J.: Numerical study of rotating detonation engine with an array of injection holes. Shock Waves 27, 467–476 (2017). https://doi.org/10.1007/s00193-016-0692-6

    Article  Google Scholar 

  16. Liu, S., Lin, Z., Liu, W., Lin, W., Zhuang, F.: Experimental realization of H2/air continuous rotating detonation in a cylindrical combustor. Combust. Sci. Technol. 184, 1302–1317 (2012). https://doi.org/10.1080/00102202.2012.682669

    Article  Google Scholar 

  17. Bykovskii, F.A., Zhdan, S.A., Vedernikov, E.F.: Continuous spin detonations. J. Propuls. Power 22, 1204–1216 (2006). https://doi.org/10.2514/1.17656

    Article  Google Scholar 

  18. Liu, Y., Wang, J., Shi, T., Wang, Y., Li, Y., Li, Y.: Experimental investigation on the H2/O2 continuously rotating detonation engine. In: 24th International Colloquium on the Dynamics of Explosions and Reactive Systems, Paper 64, Taipei, Taiwan (2013)

  19. Wu, D., Zhou, R., Liu, M., Wang, J.: Numerical investigation of the stability of rotating detonation engines. Combust. Sci. Technol. 186, 1699–1715 (2014). https://doi.org/10.1080/00102202.2014.935641

    Article  Google Scholar 

  20. Wang, Y., Wang, J.: Rotating detonation instabilities in hydrogen–oxygen mixture. Appl. Mech. Mater. 709, 56–62 (2015). https://doi.org/10.4028/www.scientific.net/AMM.709.56

    Article  Google Scholar 

  21. Anand, V., St. George, A., Driscoll, R., Gutmark, E.: Statistical treatment of wave instability in rotating detonation combustors. 53rd AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, AIAA Paper 2015-1103 (2015). https://doi.org/10.2514/6.2015-1103

  22. Hishida, M., Fujiwara, T., Wolanski, P.: Fundamentals of rotating detonations. Shock Waves 19, 1–10 (2009). https://doi.org/10.1007/s00193-008-0178-2

    Article  MATH  Google Scholar 

  23. Shimizu, H., Hayashi, A., Tsuboi, N.: Study of detailed chemical reaction model on hydrogen–air detonation. 39th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, AIAA Paper 2001-0478 (2001). https://doi.org/10.2514/6.2001-478

  24. Stull, D.R., Prophet, H.: JANAF Thermochemical Tables. The National Standard Reference Data System-National Bureau of Standards (NSRDS-NBS) 37, 2nd edn. Government Printing Office, Washington (1971)

    Google Scholar 

Download references

Acknowledgements

This research has been supported by the National Natural Science Foundation of China (Grant No. 91741202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Wang.

Additional information

Communicated by G. Ciccarelli.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Yao, S., Luan, M. et al. Effects of injection conditions on the stability of rotating detonation waves. Shock Waves 28, 1079–1087 (2018). https://doi.org/10.1007/s00193-018-0854-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-018-0854-9

Keywords

Navigation