Skip to main content
Log in

An accurate and robust AUSM-family scheme on two-dimensional triangular grids

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Most numerical schemes for solving high-speed compressible flow problems exhibit an instability that usually occurs inside the numerical shock structure in low-dissipative shock-capturing finite volume methods. In examining several test cases, the flux-difference splitting and the AUSM family of schemes cannot satisfy the robustness requirement, which manifests as the carbuncle phenomenon on two-dimensional triangular grids. This paper presents an accurate and robust AUSM-family scheme (\(\hbox {AUSMDV}^+\) scheme) that is verified against shock-induced anomalies on two-dimensional triangular grids. The linearized discrete analysis of an odd–even decoupling problem is applied to investigate the perturbation damping mechanism of these schemes. The corresponding recursive equations show that the \(\hbox {AUSMDV}^+\) scheme is less sensitive to these anomalies than are other schemes in the AUSM family. Finally, the presented scheme is extended to achieve second-order solution accuracy. Its robustness and efficiency are then evaluated on both structured and unstructured triangular grids. The \(\hbox {AUSMDV}^+\) scheme yields a physically meaningful solution for all test cases without introducing an additional shock fix technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Peery, K.M., Imlay, S.T.: Blunt-body flow simulations. 24th Joint Propulsion Conference, Boston, MA, AIAA Paper 1988-2904 (1988). https://doi.org/10.2514/6.1988-2904

  2. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981). https://doi.org/10.1006/jcph.1997.5705

    Article  MathSciNet  MATH  Google Scholar 

  3. Phongthanapanich, S., Dechaumphai, P.: Healing of shock instability for Roe’s flux-difference splitting scheme on triangular meshes. Int. J. Numer. Methods Fluids 59(5), 559–575 (2009). https://doi.org/10.1002/fld.1834

    Article  MathSciNet  MATH  Google Scholar 

  4. Ramalho, M.V.C., Azevedo, J.H.A., Azevedo, J.L.F.: Further investigation into the origin of the carbuncle phenomenon in aerodynamic simulations. AIAA Paper 2011-1184 (2011). https://doi.org/10.2514/6.2011-1184

  5. Phongthanapanich, S.: A parameter-free AUSM-based scheme for healing carbuncle phenomenon. J. Braz. Soc. Mech. Sci. Eng. 38(3), 691–701 (2016). https://doi.org/10.1007/s40430-015-0368-7

    Article  Google Scholar 

  6. Robinet, JCh., Gressier, J., Casalis, G., Moschetta, J.M.: Shock wave instability and the carbuncle phenomenon: same intrinsic origin? J. Fluid Mech. 417, 237–263 (2000). https://doi.org/10.1017/S0022112000001129

    Article  MathSciNet  MATH  Google Scholar 

  7. Quirk, J.J.: A contribution to the great Riemann solver debate. Int. J. Numer. Methods Fluids 18(6), 555–574 (1994). https://doi.org/10.1002/fld.1650180603

    Article  MathSciNet  MATH  Google Scholar 

  8. Dumbser, M., Moschetta, J.M., Gressier, J.: A matrix stability analysis of the carbuncle phenomenon. J. Comput. Phys. 197(2), 647–670 (2004). https://doi.org/10.1016/j.jcp.2003.12.013

    Article  MATH  Google Scholar 

  9. Wada, Y., Liou, M.S.: An accurate and robust flux splitting scheme for shock and contact discontinuities. SIAM J. Sci. Comput. 18(3), 633–657 (1997). https://doi.org/10.1137/S1064827595287626

    Article  MathSciNet  MATH  Google Scholar 

  10. Elling, V.: The carbuncle phenomenon is incurable. Acta Math. Sci. 29B(6), 1647–1656 (2009). https://doi.org/10.1016/S0252-9602(10)60007-0

    Article  MathSciNet  MATH  Google Scholar 

  11. Sanders, R., Morano, E., Druguet, M.C.: Multidimensional dissipation for upwind schemes: stability and applications to gas dynamics. J. Comput. Phys. 145(2), 511–537 (1998). https://doi.org/10.1006/jcph.1998.6047

    Article  MathSciNet  MATH  Google Scholar 

  12. Pandolfi, M., D’Ambrosio, D.: Numerical instabilities in upwind methods: analysis and cures for the “Carbuncle” phenomenon. J. Comput. Phys. 166(2), 271–301 (2001). https://doi.org/10.1006/jcph.2000.6652

    Article  MathSciNet  MATH  Google Scholar 

  13. Phongthanapanich, S., Dechaumphai, P.: Modified multidimensional dissipation scheme on unstructured meshes for high-speed compressible flow analysis. Int. J. Comput. Fluid Dyn. 18(8), 631–640 (2004). https://doi.org/10.1080/10618560412331297641

    Article  MATH  Google Scholar 

  14. Phongthanapanich, S.: A modified multidimensional dissipation technique for AUSM+ on triangular grids. Int. J. Comput. Fluid Dyn. 29(1), 1–11 (2015). https://doi.org/10.1080/10618562.2015.1010525

    Article  MathSciNet  Google Scholar 

  15. Phongthanapanich, S.: Multidimensional dissipation technique for AUSM scheme on triangular grids. Trans. Can. Soc. Mech. Eng. 39(2), 1–15 (2015). https://doi.org/10.1139/tcsme-2015-0022

    Article  MathSciNet  Google Scholar 

  16. Phongthanapanich, S.: Healing of the carbuncle phenomenon for AUSMDV scheme on triangular grids. Int. J. Nonlinear Sci. Numer. 17(1), 15–28 (2016). https://doi.org/10.1515/ijnsns-2015-0008

    Article  MathSciNet  MATH  Google Scholar 

  17. Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4(1), 25–34 (1994). https://doi.org/10.1007/BF01414629

    Article  MATH  Google Scholar 

  18. Shen, Z., Yan, W., Yuan, G.: A robust HLLC-type Riemann solver for strong shock. J. Comput. Phys. 309, 185–206 (2016). https://doi.org/10.1016/j.jcp.2016.01.001

    Article  MathSciNet  MATH  Google Scholar 

  19. Schmidtmann, B., Winters, A.R.: Hybrid entropy stable HLL-type Riemann solvers for hyperbolic conservation laws. J. Comput. Phys. 330, 566–570 (2017). https://doi.org/10.1016/j.jcp.2016.10.034

    Article  MathSciNet  MATH  Google Scholar 

  20. Simon, S., Mandal, J.C.: A simple cure for numerical shock instability in the HLLC Riemann solver. J. Comput. Phys. 378, 477–496 (2019). https://doi.org/10.1016/j.jcp.2018.11.022

    Article  MathSciNet  MATH  Google Scholar 

  21. Kim, K.H., Lee, J.H., Rho, O.H.: An improvement of AUSM schemes by introducing the pressure-based weight functions. Comput. Fluids 27, 311–346 (1998). https://doi.org/10.1016/S0045-7930(97)00069-8

    Article  MathSciNet  MATH  Google Scholar 

  22. Kim, K.H., Kim, C., Rho, O.H.: Methods for the accurate computations of hypersonic flows I. \(\text{ AUSMPW }^+\) scheme. J. Comput. Phys. 174(1), 38–80 (2001). https://doi.org/10.1006/jcph.2001.6873

    Article  MathSciNet  MATH  Google Scholar 

  23. Liou, M.S.: A Sequel to AUSM: AUSM\(^+\). J. Comput. Phys. 129(2), 364–382 (1996). https://doi.org/10.1006/jcph.1996.0256

    Article  MathSciNet  MATH  Google Scholar 

  24. Kitamura, K., Shima, E.: Towards shock-stable and accurate hypersonic heating computations: a new pressure flux for AUSM-family schemes. J. Comput. Phys. 245, 62–83 (2013). https://doi.org/10.1016/j.jcp.2013.02.046

    Article  MathSciNet  MATH  Google Scholar 

  25. Edwards, J.R.: A low-diffusion flux-splitting scheme for Navier–Stokes calculations. Comput. Fluids 26(6), 635–659 (1997). https://doi.org/10.1016/S0045-7930(97)00014-5

    Article  MathSciNet  MATH  Google Scholar 

  26. Zha, G.C., Shen, Y., Wang, B.: An improved low diffusion E-CUSP upwind scheme. Comput. Fluids 48(1), 214–220 (2011). https://doi.org/10.1016/j.compfluid.2011.03.012

    Article  MathSciNet  MATH  Google Scholar 

  27. Venkatakrishnan, V.: Convergence to steady state solutions of the Euler equations on unstructured grids with limiters. J. Comput. Phys. 118(1), 120–130 (1995). https://doi.org/10.1006/jcph.1995.1084

    Article  MATH  Google Scholar 

  28. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988). https://doi.org/10.1016/0021-9991(88)90177-5

    Article  MathSciNet  MATH  Google Scholar 

  29. Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27(1), 1–31 (1978). https://doi.org/10.1016/0021-9991(78)90023-2

    Article  MathSciNet  MATH  Google Scholar 

  30. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54(1), 115–173 (1984). https://doi.org/10.1016/0021-9991(84)90142-6

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is pleased to acknowledge the College of Industrial Technology, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand, for funding this research work (Grant No. Res-CIT0225/2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Phongthanapanich.

Additional information

Communicated by C.-H. Chang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phongthanapanich, S. An accurate and robust AUSM-family scheme on two-dimensional triangular grids. Shock Waves 29, 755–768 (2019). https://doi.org/10.1007/s00193-019-00892-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-019-00892-5

Keywords

Navigation