Skip to main content
Log in

A parameter-free AUSM-based scheme for healing carbuncle phenomenon

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This paper studies the two-dimensional shock-induced anomalies such as carbuncle phenomenon of the AUSM scheme on structured triangular grids. By examining several test cases, it is found that the numerical flux formulation cannot satisfy robustness against the carbuncle phenomenon. A more stable parameter-free AUSM-based scheme (AUSM-M+) is then proposed to resolve the carbuncle phenomenon. The dissipation mechanism of the AUSM and AUSM-M+ schemes are investigated by applying a linearized discrete analysis to the odd-even decoupling problem. The recursive equations show that the AUSM-M+ scheme is less sensitive to these anomalies than the original scheme. Finally, the proposed scheme is extended to second-order solution accuracy and then the evaluation of its robustness and efficiency applied to both steady and unsteady flows is presented. The results show that the AUSM-M+ scheme gives a physically meaningful solution for all test cases without introducing an additional shock fix technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Delgadillo JA, Rajamani RK (2009) Computational fluid dynamics prediction of the air-core in hydrocyclones. Int J Comput Fluid Dyn 23(2):189–197

    Article  MATH  Google Scholar 

  2. Costes M, Renaud T, Rodriguez B (2012) Rotorcraft simulations: a challenge for CFD. Int J Comput Fluid Dyn 26:383–405

    Article  MathSciNet  Google Scholar 

  3. Steger JL, Warming RF (1981) Flux vector splitting of the inviscid gas dynamic equations with application to finite difference methods. J Comput Phys 40(2):263–293

    Article  MathSciNet  MATH  Google Scholar 

  4. Van Leer B (1982) Flux vector splitting for the Euler equation. In: Krause E (ed) Eighth international conference on numerical methods in fluid dynamics. Lecture notes in physics, vol 170, 1st edn. Springer, Heidelberg, pp 507–512

  5. Roe PL (1981) Approximate Riemann solvers, parameter vectors, and difference schemes. J Comput Phys 43(2):357–372

    Article  MathSciNet  MATH  Google Scholar 

  6. Quirk JJ (1994) A contribution to the great Riemann solver debate. Int J Numer Methods Fluids 18(6):555–574

    Article  MathSciNet  MATH  Google Scholar 

  7. Phongthanapanich S, Dechaumphai P (2004) Modified \(H\)-correction entropy fix for Roe’s flux-difference splitting scheme with mesh adaptation. Trans Can Soc Mech Eng 28(3):531–549

    Google Scholar 

  8. Sanders R, Morano E, Druguet MC (1998) Multidimensional dissipation for upwind schemes: stability and applications to gas dynamics. J Comput Phys 145(1):511–537

    Article  MathSciNet  MATH  Google Scholar 

  9. Pandolfi M, D’Ambrosio D (2001) Numerical instabilities in upwind methods: analysis and cures for the “carbuncle” phenomenon. J Comput Phys 166(2):271–301

    Article  MathSciNet  MATH  Google Scholar 

  10. Phongthanapanich S, Dechaumphai P (2009) Healing of shock instability for Roe’s flux-difference splitting scheme on triangular meshes. Int J Numer Methods Fluids 59(5):559–575

    Article  MathSciNet  MATH  Google Scholar 

  11. Liou MS, Steffen CJ (1993) A new flux splitting scheme. J Comput Phys 107(1):23–39

    Article  MathSciNet  MATH  Google Scholar 

  12. Marek H, Jan V, Ondrej B (2007) On the modelling of compressible inviscid flow problems using AUSM schemes. Appl Comput Mech 1(2):469–478

    Google Scholar 

  13. da Cruz Silva EA, Azevedo JLF (2010) Evaluation of numerical schemes to solve shockwave discontinuities. In: 13th Brazilian Congress of Thermal Sciences and Engineering, Uberlandia, Brazil

  14. Konopka M, Meinke M, Schroder W (2012) Large-eddy simulation of shock/cooling-film interaction. AIAA J 50(10):2102–2114

    Article  Google Scholar 

  15. Liou MS (1996) A sequel to AUSM: AUSM+. J Comput Phys 129(2):364–382

    Article  MathSciNet  MATH  Google Scholar 

  16. Wada Y, Liou MS (1997) An accurate and robust flux splitting scheme for shock and contact discontinuities. SIAM J Sci Comput 18(3):633–657

    Article  MathSciNet  MATH  Google Scholar 

  17. Kim KH, Lee JH, Rho OH (1998) An improvement of AUSM schemes by introducing the pressure-based weight functions. Comput Fluids 27(3):311–346

    Article  MathSciNet  MATH  Google Scholar 

  18. Kim KH, Kim C, Rho OH (2001) Methods for the accurate computations of hyperbolic flows I. AUSMPW+ scheme. J Comput Phys 174(1):38–80

    Article  MathSciNet  MATH  Google Scholar 

  19. Liou MS (2006) A sequel to AUSM, Part II: AUSM+-up for all speeds. J Comput Phys 214(1):137–170

    Article  MathSciNet  MATH  Google Scholar 

  20. Kitamura K, Shima E (2013) Towards shock-stable and accurate hypersonic heating computations: a new pressure flux for AUSM-family schemes. J Comput Phys 245:62–83

    Article  MathSciNet  Google Scholar 

  21. Gressier J, Moschetta JM (2000) Robustness versus accuracy in shock-wave computations. Int J Numer Methods Fluids 33(3):313–332

    Article  MATH  Google Scholar 

  22. Venkatakrishnan V (1995) Convergence to steady state solutions of the Euler equations on unstructured grids with limiters. J Comput Phys 118(1):120–130

    Article  MATH  Google Scholar 

  23. Shu CW, Osher S (1988) Efficient implementation of essentially non-oscillatory shock-capturing schemes. J Comput Phys 77(2):439–471

    Article  MathSciNet  MATH  Google Scholar 

  24. Sod GA (1978) A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J Comput Phys 27(1):1–31

    Article  MathSciNet  MATH  Google Scholar 

  25. Hillier R (1991) Computational of shock wave diffraction at a ninety degrees convex edge. Shock Waves 1(2):89–98

    Article  MATH  Google Scholar 

  26. Woodward P, Colella P (1984) The numerical simulation of two-dimensional fluid flow with strong shocks. J Comput Phys 54(1):115–173

    Article  MathSciNet  MATH  Google Scholar 

  27. Kitamura K, Roe PL, Ismail F (2009) Evaluation of Euler fluxes for hypersonic flow computations. AIAA J 47(1):44–53

    Article  Google Scholar 

  28. Ramalho MVC, Azevedo JHA, Azevedo JLF (2011) Further investigation into the origin of the carbuncle phenomenon in aerodynamic simulations. In: 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA, 2011-1184, Orlando, Florida

Download references

Acknowledgments

The author is grateful to the College of Industrial Technology, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand for funding this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sutthisak Phongthanapanich.

Additional information

Technical Editor: Fernando Alves Rochinha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phongthanapanich, S. A parameter-free AUSM-based scheme for healing carbuncle phenomenon. J Braz. Soc. Mech. Sci. Eng. 38, 691–701 (2016). https://doi.org/10.1007/s40430-015-0368-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-015-0368-7

Keywords

Navigation