Skip to main content
Log in

Violent flows in aqueous foams III: physical multi-phase model comparison with aqueous foam shock tube experiments

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Mitigation of blast waves in aqueous foams is a problem that has a strong dependence on multi-phase effects. Here, a simplified model is developed from the previous articles treating violent flows (D’Alesio et al. in Eur J Mech B Fluids 54:105–124, 2015; Faure and Ghidaglia in Eur J Mech B Fluids 30:341–359, 2011) to capture the essential phenomena. The key is to have two fluids with separate velocities to represent the liquid and gas phases. This allows for the interaction between the two phases, which may include terms for drag, heat transfer, mass transfer due to phase change, added mass effects, to be included explicitly in the model. A good test for the proposed model is provided by two experimental data sets that use a specially designed shock tube. The first experiment has a test section filled with spray droplets, and the second has a range of aqueous foams in the test section. A substantial attenuation of the shock wave is seen in both cases, but a large difference is observed in the sound speeds. The droplets cause no observable change from the air sound speed, while the foams have a reduced sound speed of approximately 50–75 \(\hbox {m}/\hbox {s}\). In the model given here, an added mass term is introduced in the governing equations to capture the low sound speed. The match between simulation and experiment is found to be satisfactory for both droplets and the foam. This is especially good when considering the complexity of the physics and the effects that are unaccounted for, such as three-dimensionality and droplet atomisation. The resulting statistics illuminate the processes occurring in such flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(\alpha \) :

Thermal diffusivity

\(\alpha _k\) :

Volume fraction of species k

\(\delta \) :

Density fraction

\(\gamma \) :

Ratio of specific heats

\(\kappa \) :

Non-dimensional constant

\(\nu \) :

Viscosity

\(\phi \) :

Expansion ratio \(=1/\alpha _{\text {w}}\)

\(\pi \) :

Pressure constant

\({\varPi }_{\text {w}}\) :

Stiffened gas pressure constant

\(\rho \) :

Density

\(\rho _k\) :

Fluid density of species k

\(\theta _\rho \) :

Non-dimensional coefficient

c :

Sound speed

\(C^*\) :

Non-dimensional coefficient

\(C_v\) :

Specific heat capacity at constant volume

\(C_{\text {drag}}\) :

Drag coefficient

\(D_{\text {ST}}\) :

Shock tube diameter

\(e_k\) :

Specific internal energy of species k

\(E_k\) :

Total specific energy of species k

F :

Flux vector

\(f_k\) :

Added mass term of species k

\(h_k\) :

Specific enthalpy of species k

\(H_k\) :

Total specific enthalpy of species k

\(L_{\text {HP}}\) :

High-pressure chamber length

\(L_{\text {ST}}\) :

Shock tube length

M :

Mach number

\(N_x\) :

Number of cells

p :

Pressure

Q :

Phase transfer terms

\(r^*\) :

Length scale

S :

Source term matrix

t :

Time

\(T_k\) :

Temperature of species k

\(u_k\) :

Velocity of species k

v :

Vector of conserved variables

x :

Position in shock tube

CFL:

CFL number

References

  1. Del Prete, E., Chinnayya, A., Domergue, L., Hadjadj, A., Haas, J.-F.: Blast wave mitigation by dry aqueous foams. Shock Waves 23, 39–53 (2013). https://doi.org/10.1007/s00193-012-0400-0

    Article  Google Scholar 

  2. Chauvin, A., Daniel, E., Chinnayya, A., Massoni, J., Jourdan, G.: Shock waves in sprays: numerical study of secondary atomization and experimental comparison. Shock Waves 26(4), 403–415 (2016). https://doi.org/10.1007/s00193-015-0593-0

    Article  Google Scholar 

  3. Labourdette, C., Ghidaglia, J.-M., Redford, J.A., Faure, S.: Accurate state variables for fluid flow simulation using Quicksteam and Quickmethane. Eur. J. Mech. B Fluids 65, 132–240 (2017). https://doi.org/10.1016/j.euromechflu.2017.03.003

    Article  MathSciNet  MATH  Google Scholar 

  4. Bestion, D.: The physical closure laws in the CATHARE code. Nucl. Eng. Des. 124, 229–245 (1990). https://doi.org/10.1016/0029-5493(90)90294-8

    Article  Google Scholar 

  5. Faure, S., Ghidaglia, J.-M.: Violent flows in aqueous foams I: physical and numerical models. Eur. J. Mech. B Fluids 30, 341–359 (2011). https://doi.org/10.1016/j.euromechflu.2011.03.003

    Article  MathSciNet  MATH  Google Scholar 

  6. Wood, A.B.: A Textbook of Sound. G. Bell and Sons Ltd, London (1930)

    Google Scholar 

  7. Atkinson, C.M., Kytömaa, H.K.: Acoustic wave speed and attenuation in suspensions. Int. J. Multiphase Flow 18(4), 577–592 (1992). https://doi.org/10.1016/0301-9322(92)90053-J

    Article  MATH  Google Scholar 

  8. Temkin, S.: Sound speeds in suspensions in thermodynamic equilibrium. Phys. Fluids 4(11), 2399–2409 (1992). https://doi.org/10.1063/1.858481

    Article  MATH  Google Scholar 

  9. Britan, A., Shapiro, H., Liverts, M., Ben-Dor, G.: Macro-mechanical modeling of blast-wave mitigation in foams. Part III: verification of the models. Shock Waves 24(3), 241–256 (2014). https://doi.org/10.1007/s00193-013-0485-0

    Article  Google Scholar 

  10. Jourdan, G., Biamino, L., Mariani, C., Blanchot, C., Daniel, E., Massoni, J., Houas, L., Tosello, R., Praguine, D.: Attenuation of a shock wave passing through a cloud of water droplets. Shock Waves 20, 285–296 (2010). https://doi.org/10.1007/s00193-010-0251-5

    Article  MATH  Google Scholar 

  11. Jourdan, G., Mariani, C., Houas, L., Chinnayya, A., Hadjadj, A., Del Prete, E., Haas, J.-F., Rambert, N., Counilh, D., Faure, S.: Analysis of shock-wave propagation in aqueous foams using shock tube experiments. Phys. Fluids 27, 056101 (2015). https://doi.org/10.1063/1.4919905

    Article  Google Scholar 

  12. Wallis, G.B.: Critical two-phase flow. Int. J. Multiphase Flow 6(1–2), 97–112 (1980). https://doi.org/10.1016/0301-9322(80)90041-5

    Article  Google Scholar 

  13. De Lorenzo, M., Lafon, Ph, Seynhaeve, J.-M., Bartosiewicz, Y.: Benchmark of Delayed Equilibrium Model (DEM) and classic two-phase critical flow models against experimental data. Int. J. Multiphase Flow 92, 112–130 (2017). https://doi.org/10.1016/j.ijmultiphaseflow.2017.03.004

    Article  MathSciNet  Google Scholar 

  14. D’Alesio, S., Dias, F., Faure, S., Ghidaglia, J.-M., Labourdette, C., Pougeard-D’Ulimbert, T., Sollier, A.: Violent flows in aqueous foams II: simulation platform and results. Eur. J. Mech. B Fluids 54, 105–124 (2015). https://doi.org/10.1016/j.euromechflu.2015.06.011

    Article  MathSciNet  MATH  Google Scholar 

  15. Thorley, A.R.D., Wiggert, D.C.: The effect of virtual mass on the basic equations for unsteady one-dimensional heterogeneous flows. Int. J. Multiphase Flow 11(2), 149–160 (1985). https://doi.org/10.1016/0301-9322(85)90042-4

    Article  Google Scholar 

  16. Kytömaa, H.K.: Theory of sound propagation in suspensions: a guide to particle size and concentration characterization. Powder Technol. 82(1), 115–121 (1995). https://doi.org/10.1016/0032-5910(94)02901-Y

    Article  Google Scholar 

  17. Ghidaglia, J.-M., Kumbaro, A., Le Coq, G.: On the numerical solution to two fluid models via a cell centered finite volume method. Eur. J. Mech. B Fluids 20, 841–867 (2001). https://doi.org/10.1016/S0997-7546(01)01150-5

    Article  MathSciNet  MATH  Google Scholar 

  18. Ghidaglia, J.-M., Pascal, F.: The normal flux method at the boundary for multidimensional finite volume approximations in CFD. Eur. J. Mech. B Fluids 24(1), 1–17 (2005). https://doi.org/10.1016/j.euromechflu.2004.05.003

    Article  MathSciNet  MATH  Google Scholar 

  19. Stewart, H.B.: Stability of two-phase flow calculation using two-fluid models. J. Comput. Phys. 33(2), 259–270 (1979). https://doi.org/10.1016/0021-9991(79)90020-2

    Article  MATH  Google Scholar 

  20. Trotter, H.F.: Approximation of semi-groups of operators. Pac. J. Math. 8(4), 887–919 (1958). https://doi.org/10.2140/pjm.1958.8.887

    Article  MathSciNet  MATH  Google Scholar 

  21. Del Prete, E., Haas, J.-F., Counilh, D., Rambert, N., Ballanger, F., Houas, L., Jourdan, G., Mariani, C., Chinnayya, A., Hadjadj, A., Faure, S.: Propagation d’une onde de choc dans une mousse aqueuse, Chocs Avancées / Bilan 2015 Des Publications et de la Vie Scientifique De La Direction Des Applications Militaires, pp. 18–19 (2016)

  22. Ishii, M., Hibiki, T.: Thermo-Fluid Dynamics of Two-Phase Flow. Springer, New York (2006). https://doi.org/10.1007/978-1-4419-7985-8

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank CEA LRC Méso, for partly funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Redford.

Additional information

Communicated by A. Hadjadj.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here we consider the basic two-fluid model of [22], which is written as (\(\ell =1\) or 2):

$$\begin{aligned}&\frac{\partial (\alpha _\ell \rho _\ell )}{\partial t} + \mathrm{div}\, (\alpha _\ell \rho _\ell u_\ell ) = 0, \end{aligned}$$
(22)
$$\begin{aligned}&\frac{\partial (\alpha _\ell \rho _\ell u_\ell )}{\partial t} + \mathrm{div}\, (\alpha _\ell (\rho _\ell u_\ell \otimes u_\ell ))+\alpha _\ell \nabla p= f_\ell , \end{aligned}$$
(23)
$$\begin{aligned}&\frac{\partial (\alpha _\ell \rho _\ell E_\ell )}{\partial t} + \mathrm{div}\, (\alpha _\ell \rho _\ell H_\ell u_\ell ) + p \frac{\partial \alpha _\ell }{\partial t} = f_\ell \cdot u_\ell , \end{aligned}$$
(24)

where

$$\begin{aligned} f_1\equiv -\kappa \frac{\alpha _1\alpha _2\rho _1\rho _2}{\alpha _1\rho _1+\alpha _2\rho _2}\frac{\partial (u_1-u_2)}{\partial t}, \text{ and } f_2=-f_1. \end{aligned}$$
(25)

These differential equations are supplemented by three algebraic relations:

$$\begin{aligned} \alpha _1+\alpha _2=1,\,\,\,\rho _1=\rho _1(p,s_1),\,\,\,\rho _2=\rho _2(p,s_2). \end{aligned}$$
(26)

Systems (22) to (24) can be written as a quasilinear system:

$$\begin{aligned} \frac{\partial v_i}{\partial t}+ \sum ^3_{k = 1} \sum ^{10}_{j = 1}A_{i,j}^k(v)\frac{\partial v_j}{\partial x_k} = 0, \end{aligned}$$
(27)

and given a vector \(\xi \in {{\mathbb {R}}}^3\). We are interested in the eigenvalues of the \(10\times 10\) matrix

$$\begin{aligned} A(v,\xi )=\sum ^3_{k=1} \xi _k A_{i,j}^k(v). \end{aligned}$$
(28)

Since these numbers do not depend on the chosen set of dependent variables, we rewrite this system using the physical variables:

$$\begin{aligned} w\equiv (\alpha ,p,u_1,u_2,s_1,s_2). \end{aligned}$$
(29)

We also introduce the two classical thermodynamic coefficients

$$\begin{aligned} c_i\equiv \left( \sqrt{\left( \frac{\partial \rho _i}{\partial p}\right) _{s_i}}\,\right) ^{-1} \text{ and } \quad \beta _i\equiv \left( \frac{\partial \rho _i}{\partial s_i}\right) _{p}. \end{aligned}$$
(30)

Using Gibbs relation: \(T_i \mathrm {d}s_i=\mathrm {d}e_i-\frac{p}{\rho _i^2}\mathrm {d}\rho _i,\) the previous equations are combined to produce:

$$\begin{aligned}&(\alpha _1\rho _2c_2^{2} +\alpha _2\rho _1c_1^{2}) \frac{\partial p}{\partial t} + (\alpha _1\rho _2c_2^{2}u_1 +\alpha _2\rho _1c_1^{2}u_2)\nabla p \nonumber \\&\quad + \rho _1\rho _2c_1^{2}c_2^{2} \,\mathrm{div}\,(\alpha _1u_1+\alpha _2u_2)=0, \end{aligned}$$
(31)
$$\begin{aligned}&(\alpha _1\rho _2c_2^{2} +\alpha _2\rho _1c_1^{2})\frac{\partial \alpha _1}{\partial t} + \alpha _1\alpha _2(u_1-u_2)\nabla p \nonumber \\&\quad + \alpha _2\rho _1c_1^{2} \,\mathrm{div}\,(\alpha _1u_1)- \alpha _1\rho _2c_2^{2} \,\mathrm{div}\,(\alpha _2u_2)=0, \end{aligned}$$
(32)
$$\begin{aligned} \frac{\partial s_\ell }{\partial t}+u_\ell \nabla s_\ell =0, \ell = 1 \text{ or } 2, \end{aligned}$$
(33)
$$\begin{aligned}&\frac{\partial u_1}{\partial t} +\frac{\rho +\kappa \rho _1}{\rho (1+\kappa )\rho _1}\nabla p +\frac{\rho +\kappa \alpha _1\rho _1}{\rho (1+\kappa )}u_1\nabla u_1 \nonumber \\&\quad + \frac{\kappa \alpha _2\rho _2}{\rho (1+\kappa )}u_2\nabla u_2=0, \end{aligned}$$
(34)
$$\begin{aligned}&\frac{\partial u_2}{\partial t} +\frac{\rho +\kappa \rho _2}{\rho (1+\kappa )\rho _2}\nabla p +\frac{\kappa \alpha _1\rho _1}{\rho (1+\kappa )}u_1\nabla u_1 \nonumber \\&\quad +\frac{\rho +\kappa \alpha _2\rho _2}{\rho (1+\kappa )}u_2\nabla u_2=0, \end{aligned}$$
(35)

where \(\rho \equiv \alpha _1\rho _1+\alpha _2\rho _2\). Let us now write (31) to (33) as a quasilinear system:

$$\begin{aligned} \frac{\partial w_i}{\partial t}+ \sum ^3_{k = 1} \sum ^{10}_{j = 1}B_{i,j}^k(w)\frac{\partial w_j}{\partial x_k} = 0. \end{aligned}$$
(36)

By taking \({{\underline{w}}}\) as a given constant state, the linearisation of (36) around this state is:

$$\begin{aligned} \frac{\partial \omega _i}{\partial t}+ \sum ^3_{k = 1} \sum ^{10}_{j = 1}B_{i,j}^k({{\underline{w}}})\frac{\partial \omega _j}{\partial x_k} = 0. \end{aligned}$$
(37)

Hence, the eigenvalues we are looking for are complex numbers \(\lambda ({{\underline{w}}},\xi )\) such that there exists \({\varOmega }\in {{\mathbb {R}}}^{10}\) for which the plane wave:

$$\begin{aligned} \omega (x,t)\equiv {\varOmega }\exp {i(\xi \cdot x-\lambda ({{\underline{w}}},\xi )t)}, \end{aligned}$$
(38)

is a nonzero solution of (37).

$$\begin{aligned} N=\left[ \begin{array}{cccc} (\alpha _{{2}}\rho _{{1}}c_1^2u_{{1}} +\alpha _{{1}}\rho _{{2}}c_2^2u_{{2}})\cdot \xi &{}\alpha _{{1}}\alpha _{{2}} \left( u_{{1}}-u_{{2}}\right) \cdot \xi &{}(\alpha _{{1}}\alpha _{{2}}\rho _{{1}}c_1^2){^t}\xi &{}-\left( \alpha _{{1}}\alpha _{{2}}\rho _{{2}}c_2^2\right) {^t}\xi \\ \rho _{{1}}\rho _{{2}}c_1^2c_2^2 \left( u_{{1}}-u_{{2}}\right) \cdot \xi &{}(\alpha _{{1}}\rho _{{2}}c_2^2u_{{ 1}}+\alpha _{{2}}\rho _{{1}}c_1^2u_{{2}})\cdot \xi &{}(\alpha _{{1}}\rho _{{1}} \rho _{{2}}c_1^2c_2^2){^t}\xi &{}(\alpha _{{2}}\rho _{{1}}\rho _{{2}}c_1^2c_2^2){^t}\xi \\ 0&{}{\frac{{\rho }+\kappa \,\rho _{{1}}}{{\rho }\,\left( 1+\kappa \right) \rho _{{1}}}}\xi &{}{\frac{\left( {\rho }+\kappa \,\alpha _{{1}}\rho _{{1}} \right) u_{{1}}\cdot \xi }{{\rho }\,\left( 1+\kappa \right) }}{} \mathbf{I}&{}{\frac{\kappa \,\alpha _{{2}}\rho _{{2}}u_{{2}}\cdot \xi }{{\rho }\,\left( 1+\kappa \right) }}{} \mathbf{I} \\ 0&{}{\frac{{\rho }+\kappa \,\rho _{{2}}}{{\rho }\,\left( 1+\kappa \right) \rho _{{2}}}}\xi &{}{\frac{\kappa \,\alpha _{{1}}\rho _{{1}}u_{{1}}\cdot \xi }{{\rho }\,\left( 1+\kappa \right) }}{} \mathbf{I} &{}{\frac{\left( {\rho }+\kappa \,\alpha _{{2}}\rho _{{2}}\right) u_{{2 }}\cdot \xi }{{\rho }\,\left( 1+\kappa \right) }}{} \mathbf{I}\end{array}\right] . \end{aligned}$$
(39)

First, we observe that for this change of variables the system is block-diagonalised in the sense that equations (33), \(\ell = 1\) or 2,  are, for the linearised system, uncoupled. Hence, \(\lambda ({{\underline{w}}},\xi )=u_{\text {i}}\cdot \xi \), where \(i=1,2\) are eigenvalues. Then, we can study the system in \((\alpha ,p,u_1,u_2)\), which corresponds to the isentropic model. By substituting (38) into (37), the following characteristic equation is obtained for \(\lambda =\lambda ({{\underline{w}}},\xi )\):

$$\begin{aligned} {\mathrm{det}}\,(\lambda M-N)=0, \end{aligned}$$
(40)

where

$$\begin{aligned} M=\left[ \begin{array}{cccc} \alpha _{{1}}\rho _{{2}}c_2^2+\alpha _{{2}}\rho _{{1}}c_1^2&{}0&{}0&{}0 \\ 0&{}\alpha _{{1}} \rho _{{2}}c_2^2+\alpha _{{2}}\rho _{{1}}c_1^2&{}0&{}0 \\ 0&{}0&{}\mathbf{I}&{}0\\ 0&{}0&{}0&{}\mathbf{I}\end{array} \right] . \end{aligned}$$
(41)

To determine the speed of sound in the mixture, we set \(u_1=u_2=0\), and in this case matrix N in (39) becomes:

$$\begin{aligned} N_0=\left[ \begin{array}{cccc} 0&{}0&{}(\alpha _{{1}}\alpha _{{2}}\rho _{{1}}c_1^2){^t}\xi &{}-(\alpha _{{1}}\alpha _{{2}}\rho _{{2}}c_2^2){^t}\xi \\ 0&{}0&{}\left( \alpha _{{1}}\rho _{{1}} \rho _{{2}}c_1^2c_2^2\right) {^t}\xi &{}(\alpha _{{2}}\rho _{{1}}\rho _{{2}}c_1^2c_2^2){^t}\xi \\ 0&{}{\frac{{\rho }+\kappa \,\rho _{{1}}}{{\rho }\,\left( 1+\kappa \right) \rho _{{1}}}}\xi &{}\mathbf{0}&{}\mathbf{0} \\ 0&{}{\frac{{\rho }+\kappa \,\rho _{{2}}}{{\rho }\,\left( 1+\kappa \right) \rho _{{2}}}}\xi &{}\mathbf{0} &{}\mathbf{0}\end{array} \right] . \end{aligned}$$

It can easily be shown that the equation for \(\lambda \), (40), is

$$\begin{aligned} \lambda ^{4}\left( \lambda ^2-c_\kappa ^2\right) =0, \end{aligned}$$
(42)

where

$$\begin{aligned}&c_\kappa ^2\equiv \left( \frac{\alpha _1(\rho +\kappa \rho _1)}{\rho (1+\kappa )\rho _1} +\frac{\alpha _2(\rho +\kappa \rho _2)}{\rho (1+\kappa )\rho _2}\right) \nonumber \\&\quad \quad \quad \times \frac{\rho _1\rho _2 c_1^2c_2^2}{\alpha _1\rho _2 c_2^2+\alpha _2\rho _1c_1^2}. \end{aligned}$$
(43)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redford, J.A., Ghidaglia, JM. & Faure, S. Violent flows in aqueous foams III: physical multi-phase model comparison with aqueous foam shock tube experiments. Shock Waves 28, 1263–1284 (2018). https://doi.org/10.1007/s00193-018-0835-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-018-0835-z

Keywords

Navigation