Skip to main content
Log in

Detonation suppression in hydrogen–air mixtures using porous coatings on the walls

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

We considered the problem of detonation suppression and weakening of blast wave effects occurring during the combustion of hydrogen–air mixtures in confined spaces. The gasdynamic processes during combustion of hydrogen, an alternative environmentally friendly fuel, were also considered. Detonation decay and flame propagation in hydrogen–air mixtures were experimentally investigated in rectangular cross-section channels with solid walls and two types of porous coatings: steel wool and polyurethane foam. Shock wave pressure dynamics inside the section with porous coating were studied using pressure sensors; flame front propagation was studied using photodiodes and high-speed camera visualization. For all mixtures, the detonation wave formed before entering the section with porous coating. For both porous materials, the steady detonation wave decoupled in the porous section of the channel into a shock wave and flame front propagating with a velocity around the Chapman–Jouguet acoustic velocity. By the end of the porous section, shock wave pressure reductions of 70 and 85% were achieved for the polyurethane foam and steel wool, respectively. The dependence of the flame velocity on the mixture composition (equivalence ratio) is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Evans, M.W., Given, F.I., Richeson Jr., W.E.: Effects of attenuating materials on detonation induction distances in gases. J. Appl. Phys. 26, 1111–1113 (1955). https://doi.org/10.1063/1.1722162

    Article  Google Scholar 

  2. Radulescu, M.I., Lee, J.H.: The failure mechanism of gaseous detonations: experiments in porous wall tubes. Combust. Flame 131, 29–46 (2002). https://doi.org/10.1016/S0010-2180(02)00390-5

    Article  Google Scholar 

  3. Mehrjoo, N., Gao, Y., Kiyanda, C.B., Ng, H.D., Lee, J.H.: Effects of porous walled tubes on detonation transmission into unconfined space. Proc. Combust. Inst. 35, 1981–1987 (2015). https://doi.org/10.1016/j.proci.2014.06.031

    Article  Google Scholar 

  4. Radulescu, M.I., Maxwell, B.M.: The mechanism of detonation attenuation by a porous medium and its subsequent re-initiation. J. Fluid Mech. 667, 96–134 (2011). https://doi.org/10.1017/S0022112010004386

    Article  MATH  Google Scholar 

  5. Teodorczyk, A., Lee, J.: Detonation attenuation by foams and wire meshes lining the walls. Shock Waves 4, 225–236 (1995). https://doi.org/10.1007/BF01414988

    Article  Google Scholar 

  6. Xie, Q., Wen, H., Ren, Z., Liu, H., Wang, B., Wolanski, P.: Effects of silicone rubber and aerogel blanket-walled tubes on \({\rm H}_2\)/Air gaseous detonation. J. Loss. Prevent. Proc. 49, 753–761 (2017). https://doi.org/10.1016/j.jlp.2017.01.003

    Article  Google Scholar 

  7. Zalosh, R.: Deflagration suppression using expanded metal mesh and polymer foams. J. Loss. Prevent. Proc. 20, 659–663 (2007). https://doi.org/10.1016/j.jlp.2007.04.039

    Article  Google Scholar 

  8. Medvedev, S., Khomik, S., Gelfand, B.: Recovery and suppression of the detonation of hydrogen–air mixtures at an obstacle with orifices. Russ. J. Phys. Chem. B. 3, 963–970 (2009). https://doi.org/10.1134/S1990793109060165

    Article  Google Scholar 

  9. Wen, X., Xie, M., Yu, M., Li, G., Ji, W.: Porous media quenching behaviors of gas deflagration in the presence of obstacles. Exp. Therm. Fluid Sci. 50, 37–44 (2013). https://doi.org/10.1016/j.expthermflusci.2013.05.002

    Article  Google Scholar 

  10. Babkin, V., Korzhavin, A., Bunev, V.: Propagation of premixed gaseous explosion flames in porous media. Combust. Flame 87, 182–190 (1991). https://doi.org/10.1016/0010-2180(91)90168-B

    Article  Google Scholar 

  11. Yan, X., Yu, J.: Effect of aluminum silicate wool on the flame speed and explosion overpressure in a pipeline. Combust. Explos. Shock 49, 153–158 (2013). https://doi.org/10.1134/S0010508213020044

    Article  Google Scholar 

  12. Guo, Thomas, G., Li, J., Zhang, D.: Experimental study of gaseous detonation propagation over acoustically absorbing walls. Shock Waves 11, 353–359 (2002). https://doi.org/10.1007/s001930100113

    Article  Google Scholar 

  13. Korzhavin, A., Bunev, V., Babkin, V., Klimenko, A.: Selective diffusion during flame propagation and quenching in a porous medium. Combust. Explos. Shock 41, 405–413 (2005). https://doi.org/10.1007/s10573-005-0049-4

    Article  Google Scholar 

  14. Vasil’ev, A.: Near-limiting detonation in channels with porous walls. Combust. Explos. Shock 30, 101–106 (1994). https://doi.org/10.1007/BF00787892

    Article  Google Scholar 

  15. Bivol, G.Yu., Golovastov, S.V., Golub, V.V.: Attenuation and recovery of detonation wave after passing through acoustically absorbing section in hydrogen–air mixture at atmospheric pressure. J. Loss. Prevent. Proc. 43, 311–314 (2016). https://doi.org/10.1016/j.jlp.2016.05.032

  16. Ciccarelli, G., Johansen, C., Parravani, M.: Transition in the propagation mechanism during flame acceleration in porous media. Proc. Combust. Inst. 33, 2273–2278 (2011). https://doi.org/10.1016/j.proci.2010.07.082

    Article  Google Scholar 

  17. Johansen, C., Ciccarelli, G.: Combustion in a horizontal channel partially filled with a porous media. Shock Waves 18, 97–106 (2008). https://doi.org/10.1007/s00193-008-0151-0

    Article  Google Scholar 

  18. Ciccarelli, G., Johansen, C., Kellenberger, M.: High-speed flames and DDT in very rough-walled channels. Combust. Flame 160, 204–211 (2013). https://doi.org/10.1016/j.combustflame.2012.08.009

    Article  Google Scholar 

  19. Zhang, B.: The influence of wall roughness on detonation limits in hydrogen oxygen mixture. Combust. Flame 169, 333–339 (2016). https://doi.org/10.1016/j.combustflame.2016.05.003

    Article  Google Scholar 

  20. Wang, L., Ma, H., Shen, Z., Fan, Z.: Detonation characteristics of stoichiometric \({\rm H}_2\)-\({\rm O}_2\) diluted with Ar/\({\rm N}_2\) in smooth and porous tubes. Exp. Therm. Fluid Sci. (2017). https://doi.org/10.1016/j.expthermflusci.2017.08.021

  21. Gvozdeva, L., Faresov, I.M., Brossard, J., Charpentier, N.: Normal shock wave reflection on porous compressible material. In: Dynamics of Explosions, Progress in Astronautics and Aeronautics, vol. 106, pp. 155–165. AIAA (1986). https://doi.org/10.2514/5.9781600865800.0155.0165

  22. Skews, B., Atkins, M., Seitz, M.: The impact of a shock wave on porous compressible foams. J. Fluid Mech. 253, 245–265 (1993). https://doi.org/10.1017/S0022112093001788

    Article  Google Scholar 

  23. Ben-Dor, G., Mazor, G., Igra, O., Sorek, S., Onodera, H.: Shock wave interaction with cellular materials. Shock Waves 3, 167–179 (1994). https://doi.org/10.1007/BF01414711

    Article  MATH  Google Scholar 

  24. Di Mare, L., Mihalik, T., Continillo, G., Lee, J.: Experimental and numerical study of flammability limits of gaseous mixtures in porous media. Exp. Therm. Fluid Sci. 21, 117–123 (2000). https://doi.org/10.1016/S0894-1777(99)00061-8

    Article  Google Scholar 

  25. Lee, J.H., Knystautas, R., Chan, C.K.: Turbulent flame propagation in obstacle-filled tubes. In: Proceedings of the 20th Symposium (International) on Combustion, pp. 1663–1672 (1984). https://doi.org/10.1016/S0082-0784(85)80662-7

  26. Teodorczyk, A.: Scale effects on hydrogen-air fast deflagrations and detonations in small obstructed channels. J. Loss. Prevent. Proc. 21, 147–153 (2008). https://doi.org/10.1016/j.jlp.2007.06.017

  27. Lee, J.H.S., Knystautas, R., Freiman, A.: High speed turbulent deflagrations and transition to detonation in \({\rm H}_2\) air mixtures. Combust. Flame 56, 227–239 (1984). https://doi.org/10.1016/0010-2180(84)90039-7

  28. Eder, A., Brehm, N.: Analytical and experimental insights into fast deflagrations, detonations, and the deflagration-to-detonation transition process. Heat Mass Transf. 37, 543–548 (2001). https://doi.org/10.1007/s002310100238

    Article  Google Scholar 

  29. Chue, R.S., Clark, J.F., Lee, J.H.S.: Chapman–Jouguet deflagrations. Proc. Roy. Soc. 441, 607–623 (1993). https://doi.org/10.1098/rspa.1993.0082

    Article  Google Scholar 

  30. Vasilev, L.A.: Schlieren Methods. Keter, New York (1971)

    Google Scholar 

Download references

Acknowledgements

The work is supported by the programme of fundamental scientific research of state academies of sciences (JIHT RAS, No. 0044-2014-0014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Yu. Bivol.

Additional information

Communicated by G. Ciccarelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bivol, G.Y., Golovastov, S.V. & Golub, V.V. Detonation suppression in hydrogen–air mixtures using porous coatings on the walls. Shock Waves 28, 1011–1018 (2018). https://doi.org/10.1007/s00193-018-0831-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-018-0831-3

Keywords

Navigation