Skip to main content
Log in

Initiation and suppression of explosive processes in hydrogen-containing mixtures by means of permeable barriers

  • Reviews
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Experimental data on the interaction of detonation and shock waves with permeable barriers in cylindrical channels in hydrogen—air mixtures are presented. The method of soot tracks on semi-cylindrical smoked inserts made it possible to elucidate the mechanisms of initiation of the detonation downstream of the barriers. The possibility of initiating explosive processes, including detonation wave decay, is demonstrated. The numerical simulation of the detonation initiation behind the permeable barrier represented by a perforated screen is performed. Analysis of the experimental and calculation results demonstrated that in the near zone behind the barrier, detonation is initiated upon collision (focusing) of hemispherical shock waves emerging from separate holes. In the far zone, the initiation mechanism is similar to that observed on deflagration-to-detonation transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. P. Medvedev, S. V. Khomik, H. Olivier, B. E. Gelfand, in CD-ROM Proc. Eur. Comb. Meet., 2003, Paper 104.

    Google Scholar 

  2. S. P. Medvedev, S. V. Khomik, H. Olivier, A. N. Polenov, A. M. Bartenev, B. E. Gelfand, Shock Waves, 2005, 14, No. 3, 193.

    Article  Google Scholar 

  3. S. V. Khomik, S. P. Medvedev, B. E. Gelfand, Comb. Explos. Shock Waves, Int. Ed., 2010, 46, 47 [Fizika Goreniya i Vzryva, 2010, 46, 54].

    Article  Google Scholar 

  4. S. V. Khomik, B. Veyssiere, S. P. Medvedev, V. Montassier, H. Olivier, Shock Waves, 2012, 22, No. 1, 199.

    Article  Google Scholar 

  5. J.-S. Grondin, J. H. S. Lee, Shock Waves, 2010, 20, No. 5, 381.

    Article  Google Scholar 

  6. J. Chao, J. H. S. Lee, in Proc. of 2002 Spring Technical Meeting, The Combustion Institute Canadian Section University of Windsor, 2002, Paper 42.1.

    Google Scholar 

  7. N. V. Bannikov, A. A. Vasil’ev, Comb., Explos. Shock Waves, Int. Ed., 1992, 28, 270 [Fizika Goreniya i Vzryva, 1992, 28, 65].

    Article  Google Scholar 

  8. R. I. Soloukhin, Acta Astron., 1974, 1, 249.

    Article  CAS  Google Scholar 

  9. S. V. Khomik, S. P. Medvedev, A. N. Polenov, B. E. Gelfand, Comb. Explos. Shock Waves, Int. Ed., 2007, 43, 697 [Fizika Goreniya i Vzryva, 2007, 43, 84].

    Article  Google Scholar 

  10. T. Obara, J. Sentanuhady, Y. Tsukada, S. Ohya, Shock Waves, 2008, 18, 117.

    Article  Google Scholar 

  11. S. V. Khomik, O. G. Maksimova, B. Veyssiere, S. P. Medvedev, Proc. Int. Coll. on Phys. of Shock Waves, Combustion and Detonation (Minsk, November 14–19, 2011), Minsk, 2011, p. 64.

    Google Scholar 

  12. S. V. Khomik, B. Veyssiere, S. P. Medvedev, V. Montassier, G. L. Agafonov, M. V. Silnikov, Shock Waves, 2013, 23, No. 3, 207.

    Article  Google Scholar 

  13. A. M. Bartenev, B. E. Gelfand, Prog. Energy Comb. Sci., 2000, 26, 29.

    Article  CAS  Google Scholar 

  14. S. V. Khomik, B. Veyssiere, S. P. Medvedev, V. Montassier, H. Olivier, in Nonequilibrium Phenomena: Plasma, Combustion, Atmosphere, Eds G. D. Roy, S. M. Frolov, A. M. Starik, Torus Press Ltd., Moscow, 2009.

  15. G. Thomas, Proc. Symp On Shock Wave, ISAS, SAGAMIHARA, KANAGAVA, Japan, 2001, p. 589–592.

    Google Scholar 

  16. S. P. Medvedev, S. V. Khomik, B. E. Gelfand, Russ. J. Phys. Chem. B (Engl. Transl.), 2009, 3, 963 [Khim. Fiz., 2009, 28, No. 12, 52].

    Article  Google Scholar 

  17. A. V. Zibarov, D. M. Babaev, A. M. Shadskii, SAPR i grafika [CAD and Graphics], 2000, 10, 44 (in Russian).

    Google Scholar 

  18. N. M. Marinov, C. K. Westbrook, W. J. Pitz, in Transport Phenomena in Combustion, Ed. S. H. Chan, 1, Taylor and Francis, Washington (DC), 1996, p. 118.

    CAS  Google Scholar 

  19. O. G. Maksimova, S. P. Medvedev, S. V. Khomik, G. L. Agafonov, in Gorenie i Vzryv [Combusion and Explosion], Ed. S. M. Frolov, Torus Press, Moscow, 2012, p. 125 (in Russian).

  20. B. D. Taylor, D. A. Kessler, V. N. Gamezo, E. S. Oran, Proc. Comb. Institute, 2013, 34, 2009.

    Article  CAS  Google Scholar 

  21. A. Y. Kusharin, G. L. Agafonov, O. E. Popov, B. E. Gelfand, Comb. Sci. Technol., 1998, 135, 85.

    Article  CAS  Google Scholar 

  22. O. G. Maksimova, S. P. Medvedev, S. V. Khomik, G. L. Agafonov, Conference “Khimicheskaya Fizika i Stroenie Veshchestva: k 90-Letiyu So Dnya Rozhdeniya V. I. Gol’danskogo” [Chemical Physics and Structure of Matter Dedicated to the 90th Anniversary of V. I. Gol’dansky birth], Abstrs., Torus Press, Moscow, 2013, p. 56 (in Russian).

    Google Scholar 

  23. M. F. Ivanov, A. D. Kiverin, M. A. Liberman, V. E. Fortov, Dokl. Phys. (Engl. Transl.), 2010, 55, 480 [Dokl. AN, 2010, 434, 756].

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Khomik.

Additional information

Based on the materials of the XXV Conference “Modern Chemical Physics” (September 20–October 1, 2013, Tuapse).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1666–1676, August, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khomik, S.V., Medvedev, S.P., Veyssiere, B. et al. Initiation and suppression of explosive processes in hydrogen-containing mixtures by means of permeable barriers. Russ Chem Bull 63, 1666–1676 (2014). https://doi.org/10.1007/s11172-014-0652-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-014-0652-1

Key words

Navigation