Skip to main content
Log in

Numerical study of rotating detonation engine with an array of injection holes

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

This paper aims to adopt the method of injection via an array of holes in three-dimensional numerical simulations of a rotating detonation engine (RDE). The calculation is based on the Euler equations coupled with a one-step Arrhenius chemistry model. A pre-mixed stoichiometric hydrogen–air mixture is used. The present study uses a more practical fuel injection method in RDE simulations, injection via an array of holes, which is different from the previous conventional simulations where a relatively simple full injection method is usually adopted. The computational results capture some important experimental observations and a transient period after initiation. These phenomena are usually absent in conventional RDE simulations due to the use of an idealistic injection approximation. The results are compared with those obtained from other numerical studies and experiments with RDEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Voitsekhovskii, B.V.: Stationary spin detonation. Dokl. Akad. Nauk SSSR 129(6), 1254–1256 (1959)

    Google Scholar 

  2. Bykovskii, F.A., Zhdan, S.A., Vedernikov, E.F.: Continuous spin detonation. J. Propuls. Power 22(6), 1204–1216 (2006)

    Article  Google Scholar 

  3. Frolov, S.M., Aksenov, V.S., Ivanov, V.S., Shamshin, I.O.: Large-scale hydrogen–air continuous detonation combustor. Int. J. Hydrog. Energy 40(3), 1616–1623 (2015)

    Article  Google Scholar 

  4. Kindracki, J., Wolanski, P., Gut, Z.: Experimental research on the rotating detonation in gaseous fuels–oxygen mixtures. Shock Waves 21(2), 75–87 (2011)

    Article  Google Scholar 

  5. Suchocki, J.A., Yu, S.T.J., Hoke, J.L., Naples, A.G., Schauer, F.R., Russo, R.: Rotating detonation engine operation. AIAA paper 2012-0119 (2012)

  6. Fotia, M.L., Schauer, F., Kaemming, T., Hoke, J.: Experimental study of the performances of a rotating detonation engine with nozzle. J. Propuls. Power 32(3), 674–681 (2016)

    Article  Google Scholar 

  7. Lu, F.K., Braun, E.M.: Rotating detonation wave propulsion: experimental challenges, modeling, and engine concepts. J. Propuls. Power 30(5), 1125–1142 (2014)

    Article  Google Scholar 

  8. George, A.S., Driscoll, R., Anand, V., Gutmark, E.J: Starting transients and detonation onset behavior in a rotating detonation combustor. AIAA paper 2016-0126 (2016)

  9. Falempin, F., Naour, B.L.: R&T effort on pulsed and continuous detonation wave engines. AIAA paper 2009-7284 (2009)

  10. Ishihara, K., Kato, Y., Matsuoka, K., Kasahara, J., Matsuo, A., Funaki, I.: Thrust performance evaluation of a rotating detonation engine with a conical plug. In: 25th International Colloquium on the Dynamics of Explosions and Reactive Systems, Leeds, UK (2015)

  11. Wang, C., Liu, W.D., Liu, S.J., Jiang, L.X., Lin, Z.Y.: Experimental verification of air-breathing continuous rotating detonation fueled by hydrogen. Int. J. Hydrog. Energy 40(30), 9530–9538 (2015)

    Article  Google Scholar 

  12. Liu, Y.S., Wang, Y.H., Li, Y.S., Li, Y., Wang, J.P.: Spectral analysis and self-adjusting mechanism for oscillation phenomenon in hydrogen–oxygen continuously rotating detonation engine. Chin. J. Aeronaut. 28(3), 669–675 (2015)

    Article  Google Scholar 

  13. Yang, C.L., Wu, X.S., Ma, H., Peng, L., Gao, J.: Experimental research on initiation characteristics of a rotating detonation engine. Therm. Fluid Sci. 71, 154–163 (2016)

    Article  Google Scholar 

  14. Zhdan, S.A., Bykovskii, F.A., Vedernikov, E.F.: Mathematical modeling of a rotating detonation wave in a hydrogen–oxygen mixture. Combust. Explos. Shock Waves 43(4), 449–459 (2007)

    Article  Google Scholar 

  15. Davidenko, D.M., Gökalp, I., Kudryavtsev, A.N.: Numerical study of the continuous detonation wave rocket engine. AIAA paper 2008-2680 (2008)

  16. Hishida, M., Fujiwara, T., Wolanski, P.: Fundamentals of rotating detonations. Shock Waves 19(1), 1–10 (2009)

    Article  MATH  Google Scholar 

  17. Yi, T.H., Lou, J., Turangan, C., Choi, J.Y., Wolanski, P.: Propulsive performance of a continuously rotating detonation engine. J. Propuls. Power 27(1), 171–181 (2011)

    Article  Google Scholar 

  18. Schwer, D., Kailasanath, K.: Numerical investigation of the physics of rotating-detonation-engines. Proc. Combust. Inst. 33(2), 2195–2202 (2011)

    Article  Google Scholar 

  19. Zhou, R., Wang, J.P.: Numerical investigation of shock wave reflections near the head ends of rotating detonation engines. Shock Waves 23(5), 461–472 (2013)

  20. Uemura, Y., Hayashi, A.K., Asahara, M., Tsuboi, N., Yamada, E.: Transverse wave generation mechanism in rotating detonation. Proc. Combust. Inst. 34(2), 1981–1989 (2013)

  21. Tang, X.M., Wang, J.P., Shao, Y.T.: Three-dimensional numerical investigations of the rotating detonation engine with a hollow combustor. Combust. Flame 162(4), 997–1008 (2015)

    Article  Google Scholar 

  22. Nordeen, C.A., Schwer, D., Schauer, F., Hoke, J., Barber, T., Cetegen, B.M.: Role of inlet reactant mixedness on the thermodynamic performance of a rotating detonation engine. Shock Waves, 26(4), 417–428 (2016)

  23. Schwer, D.A., Kailasanath, K.: Effect of inlet on fill region and performance of rotating detonation engines. AIAA paper 2011-6044 (2012)

  24. Liu, M., Zhou, R., Wang, J.P.: Numerical investigation of different injection patterns in rotating detonation engines. Combust. Sci. Technol. 187(3), 343–361 (2015)

    Article  Google Scholar 

  25. Dubrovskii, A.V., Ivanov, V.S., Frolov, S.M.: Three-dimensional numerical simulation of the operation process in a continuous detonation combustor with separate feeding of hydrogen and air. Russ. J. Phys. Chem. B 9(1), 104–119 (2015)

    Article  Google Scholar 

  26. Bykovskii, F.A., Zhdan, S.A., Vedernikov, E.F.: Continuous spin detonation of fuel–air mixtures. Combust. Explos. Shock Waves 42(4), 463–471 (2006)

    Article  Google Scholar 

  27. Oran, E.S., Weber Jr., J.W., Stefaniw, E.I., Lefebvre, M.H., Anderson Jr., J.D.: A numerical study of a two-dimensional \({\rm H}_{2}{\rm -O}_{2}\)–Ar detonation using a detailed chemical reaction model. Combust. Flame 113, 147–163 (1998)

  28. Ma, F., Choi, J.Y., Yang, V.: Propulsive performance of airbreathing pulse detonation engines. J. Propuls. Power 22(6), 1188–1203 (2006)

    Article  Google Scholar 

  29. Balsara, D.S., Shu, C.W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160(2), 405–452 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, M., Zhang, S., Wang, J.P., Chen, Y.F.: Parallel three-dimensional numerical simulation of rotating detonation engine on graphics processing units. Comput. Fluids. 110, 36–42 (2015)

    Article  Google Scholar 

  31. Tsuboi, N., Katoh, S., Hayashi, A.K.: Three-dimensional numerical simulation for hydrogen/air detonation: rectangular and diagonal structures. Proc. Combust. Inst. 29(2), 2783–2788 (2002)

    Article  Google Scholar 

  32. Gamezo, V.N., Desbordes, D., Oran, E.S.: Formation and evolution of two-dimensional cellular detonations. Combust. Flame 116(1), 154–165 (1999)

    Article  Google Scholar 

  33. Ginsberg, T., Ciccarelli, G., Boccio, J.: Initial hydrogen detonation data from the high-temperature combustion facility. BNL-NUREG-61445, Brookhaven National Laboratory, NY, USA (1994)

  34. Wolanski, P.: Rotating detonation wave stability. In: 23rd International Colloquium on the Dynamics of Explosions and Reactive Systems, Irvin, USA (2013)

  35. Yao, S.B., Liu, M., Wang, J.P.: Numerical investigation of spontaneous formation of multiple detonation wave fronts in rotating detonation engine. Combust. Sci. Technol. 187(12), 1867–1878 (2015)

    Article  Google Scholar 

  36. Bykovskii, F.A., Zhdan, S.A., Vedernikov, E.F.: Initiation of detonation of fuel–air mixtures in a flow-type annular combustor. Combust. Explos. Shock Waves 50(2), 214–222 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The present study is sponsored by the National Natural Science Foundation of China (Grant No. 91441110). The computations were calculated on HPC System Mole-8.5 constructed by the Institute of Process Engineering, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Wang.

Additional information

Communicated by F. Lu and A. Higgins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, S., Han, X., Liu, Y. et al. Numerical study of rotating detonation engine with an array of injection holes. Shock Waves 27, 467–476 (2017). https://doi.org/10.1007/s00193-016-0692-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-016-0692-6

Keywords

Navigation