Skip to main content
Log in

Experimental investigation into the detonation characteristics of hybrid RDX–ethylene–air mixtures

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

An experimental study is conducted to determine the detonation characteristics of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) particles dispersed in a gaseous fuel air mixture in a vertical detonation tube with an inner diameter of 200 mm and a height of 5400 mm. Experiments are performed in both ethylene–air mixtures and RDX–ethylene–air hybrid mixtures. The detonation front pressure and velocity are measured with six pressure transducers along the detonation tube. The results show that the addition of RDX assists 4.0 vol.% ethylene–air mixtures in achieving detonation. The detonation front pressure increases noticeably with dust concentration up to \(474\hbox { g/m}^{3}\) in the RDX–ethylene–air hybrid mixtures, but the velocity only increases slightly. The cellular structures of RDX–ethylene–air hybrid mixtures and ethylene–air mixtures were obtained with the use of smoked foils and exhibit irregular structures. It is found that the measured cell size has a U-shaped curve with respect to RDX concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dorofeev, S.B., Sidorov, V.P., Kuznetsov, M.S., Dvoinishnikov, A.E., Alekseev, V.I., Efimenko, A.A.: Air blast and heat radiation from fuel-rich mixture detonations. Shock Waves 6, 21–28 (1996)

    Article  Google Scholar 

  2. Li, J., Fan, W., Yan, C., Tu, H., Xie, K.: Performance enhancement of a pulse detonation rocket engine. Proc. Combust. Inst. 33, 2243–2254 (2011)

    Article  Google Scholar 

  3. Davidson, D.F., Horning, D.C., Herbon, J.T., Hanson, R.K.: Shock tube measurements of JP-10 ignition. Proceedings of the Combustion Institute. vol. 28, pp. 1687–1692 (2000)

  4. Eckhoff, R.K.: Does the dust explosion risk increase when moving from \(\mu \text{ m }\)-particle powders to powders of nm-particles? J. Loss Prevent. Process Ind. 25, 448–459 (2012)

  5. Benedetto, A.Di, Russo, P.: Thermo-kinetic modelling of dust explosions. J. Loss Prevent. Process Ind. 20, 303–309 (2007)

    Article  Google Scholar 

  6. Hertzberg, M., Zlochower, I.A., Cashdollar, K.L.: Volatility model for coal dust flame propagation and extinguishment. Symposium (International) on Combustion, Elsevier, vol. 21, pp. 325–333 (1988)

  7. Khalili, I., Dufaud, O., Poupeau, M., Cuervo-Rodriguez, N., Perrin, L.: Ignition sensitivity of gas–vapor/dust hybrid mixtures. Powder Technol. 217, 199–206 (2012)

    Article  Google Scholar 

  8. Zhang, F.: Detonation of gas–particle flow. In: Zhang, F. (ed.) Heterogeneous Detonation, pp. 87–168. Springer, Berlin Heidelberg (2009)

    Google Scholar 

  9. Zhang, F., Greilich, P., Grönig, H.: Propagation mechanism of dust detonations. Shock Waves 2, 81–88 (1992)

    Article  Google Scholar 

  10. Zhang, F., Murray, S.B., Gerrard, K.B.: Aluminum particles-air detonation at elevated pressures. Shock Waves 15, 313–324 (2006)

    Article  Google Scholar 

  11. Kauffman, C.W., Sichel, M., Wolanski, P.: Research on dust explosions at the University of Michigan. Powder Technol. 71, 119–134 (1992)

    Article  Google Scholar 

  12. Veyssiere, B., Khasainov, B.A.: Structure and multiplicity of detonation regimes in heterogeneous hybrid mixtures. Shock Waves 4, 171–186 (1995)

    Article  Google Scholar 

  13. Khasainov, B., Veyssiere, B.: Initiation of detonation regimes in hybrid two-phase mixtures. Shock Waves 6, 9–15 (1996)

    Article  Google Scholar 

  14. Veyssiere, B., Khasainov, B.A.: A model for steady, plane, double-front detonations (DFD) in gaseous explosive mixtures with aluminum particles in suspension. Combust. Flame 85, 241–253 (1991)

    Article  Google Scholar 

  15. Wang, H., Sun, X., Rao, G., Jian, G., Xie, L.: The critical energy of direct initiation in liquid fuel–air and liquid fuel-RDX powder–air mixtures in a vertical detonation tube. Propell. Explos. Pyrotech. 39, 597–603 (2014)

    Article  Google Scholar 

  16. Lee, F.P., Kauffman, C.W., Sichel, M., Nicholls, J.A.: Detonability of RDX dust in air/oxygen mixtures. AIAA J. 24(11), 1811–1816 (1986)

  17. Sichel, M., Baek, S.W., Kauffman, C.W., Maker, B., Nicholls, J.A., Wolanski, P.: The shock wave ignition of dusts. AIAA J. 23(9), 1374–1380 (1985)

    Article  Google Scholar 

  18. Kauffman, C.W., Nicholls, J.A., Sichel, M., Lee, F.P.: Detonation characteristics of some dusts and liquid-dust suspensions. Final Report to AFOSR, Michigan, USA (1983)

  19. Kaneshige, M., Shepherd, J.E.: Detonation database: GALCIT Report FM97-8. California Institute of Technology, Pasadena (1997)

    Google Scholar 

  20. Austin, J.M., Shepherd, J.E.: Detonations in hydrocarbon fuel blends. Combust. Flame 132, 73–90 (2003)

    Article  Google Scholar 

  21. Yao, G., Zhang, B., Xiu, G., Bai, C., Liu, P.: The critical energy of direct initiation and detonation cell size in liquid hydrocarbon fuel/air mixtures. Fuel 113, 331–339 (2013)

    Article  Google Scholar 

  22. Khasainov, B., Virot, F., Veyssière, B.: Three-dimensional cellular structure of detonations in suspensions of aluminium particles. Shock Waves 23, 271–282 (2013)

    Article  Google Scholar 

  23. Desbordes, D., Presles, H.N.: Multi-scaled cellular detonation. In: Zhang, F. (ed.) Detonation Dynamics, pp. 281–338. Springer, Berlin (2012)

    Google Scholar 

  24. Shepherd, J.E., Moen, I.O., Murray, S.B., Thibault, P.A.: Analyses of the cellular structure of detonations. Symposium (International) on Combustion, Elsevier, vol. 21, pp. 1649–1658 (1988)

  25. Shepherd, J.E., Tieszen, S.R.: Detonation cellular structure and image processing (No. SAND-86-0033; CONF-860804-8). Sandia National Labs., Albuquerque, USA (1986)

  26. McBride, B.J., Gordon, S.: Computer program for calculation of complex chemical equilibrium compositions and applications II: user’s manual and program description NASA report (1996)

  27. Knystautas, R., Guirao, C., Lee, J.H., Sulmistras, A.: Measurement of cell size in hydrocarbon–air mixtures and predictions of critical tube diameter, critical initiation energy, and detonability limits. Prog. Astronaut. Aeronaut. 94, 23–37 (1984)

    Google Scholar 

  28. Strehlow, R.A.: Transverse waves in detonations: II. structure and spacing in \(\text{ H }_{2}\)\(\text{ O }_{2}\), \(\text{ C }_{2}\text{ H }_{2}\)\(\text{ O }_{2}\), \(\text{ C }_{2}\text{ H }_{4}\)\(\text{ O }_{2}\) and \(\text{ CH }_{4}\)\(\text{ O }_{2}\) systems. AIAA J. 7, 492–496 (1969)

  29. Zeldovich, I.B., Kogarko, S.M., Simonov, N.N.: An experimental investigation of spherical detonation of gases. Sov. Phys. Tech. Phys. 1, 1689–1713 (1956)

    Google Scholar 

  30. Lee, J.H., Ramamurthi, K.: On the concept of the critical size of a detonation kernel. Combust. Flame 27, 331–340 (1976)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Science Foundation for Young Scientists of China (Grant No. 11102091) and Doctoral Scientific Fund Project of the Ministry of Education of China (Grant No. 20113219110010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Rao.

Additional information

Communicated by G. Ciccarelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Yao, J., Yang, Z. et al. Experimental investigation into the detonation characteristics of hybrid RDX–ethylene–air mixtures. Shock Waves 26, 611–619 (2016). https://doi.org/10.1007/s00193-016-0622-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-016-0622-7

Keywords

Navigation