Skip to main content
Log in

Thermomechanics of transient oblique compaction shock reflection from a rigid boundary

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Transient oblique reflection of resolved compaction shocks in porous material from a rigid planar boundary is computationally examined to characterize how spatial reflection structures vary with reflection angle. The material response is described by a hydrodynamic theory that accounts for both elastic and inelastic volumetric deformation. The mathematical model, expressed in terms of curvilinear coordinates, is numerically integrated using a high-resolution technique. Emphasis is placed on characterizing the relative importance of compression and compaction work as heating mechanisms. Spatially continuous structures are predicted that propagate at speeds below the ambient sound speed of the solid component which are analogous to discontinuous structures for oblique reflection of gas shocks. An analogous transition from a von Neumann reflection to a Mach reflection to a regular reflection is predicted with increasing reflection angle, with high dissipative heating induced by configurations possessing a stem-like structure. Compression and dissipation by rate-dependent compaction are shown to be primary heating mechanisms, whereas dissipation by inelastic compaction is of secondary importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Baer, M.R., Nunziato, J.W.: A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiph. Flow 12(6), 861–889 (1986)

    Article  MATH  Google Scholar 

  2. Bdzil, J.B., Menikoff, R., Son, S.F., Kapila, A.K., Stewart, D.S.: Two-phase modeling of deflagration-to-detonation transition in granular materials: a critical examination of modeling issues. Phys. Fluids 11(2), 378–402 (1999)

    Article  MATH  Google Scholar 

  3. Ben-Dor, G.: Shock Wave Reflection Phenomena. Springer, Berlin (2007)

    MATH  Google Scholar 

  4. Brown, B.P., Argrow, B.M.: Two-dimensional shock tube flow for dense gases. J. Fluid Mech. 349, 95–115 (1997)

    Article  MATH  Google Scholar 

  5. Coyne, P.J. Jr., Elban, W.L., Chiarito, M.A.: The strain rate behavior of coarse HMX porous bed compaction. In: Eighth International Detonation Symposium, pp. 645–657 (1989)

  6. Elban, W.L., Chiarito, M.A.: Quasi-Static compaction study of coarse HMX explosive. Powder Technol. 46, 181–193 (1986)

    Article  Google Scholar 

  7. Field, J.E., Palmer, S.J.P., Pope, P.H., Sundararajan, R., Swallowe, G.M.: Mechanical properties of PBX’s and their behavior during drop-weight impact. In: Proceedings of Eighth International Symposium on Detonation, pp. 635–644 (1985)

  8. Glaz, H.M., Colella, P., Glass, I.I., Deschambault, R.L.: A numerical study of oblique shock-wave reflections with experimental comparisons. Proc. R. Soc. Lond. Ser. A 398(1814), 117–140 (1985)

    Article  Google Scholar 

  9. Gibbs, T.R., Popolato, A.: LASL Explosive Property Data. University of California Press, Berkeley (1980)

    Google Scholar 

  10. Gonthier, K.A., Menikoff, R., Son, S.F., Asay, B.W.: Modeling compaction induced energy dissipation of granular HMX. In: Proceedings of the \(11^{th}\) Detonation Symposium, pp. 153–161 (1998)

  11. Gonthier, K.A.: Modeling and analysis of reactive compaction for granular energetic solids. Combust. Sci. Technol. 175, 1679–1709 (2003)

    Article  Google Scholar 

  12. Gonthier, K.A.: Predictions for weak mechanical ignition of strain hardened granular explosive. J. Appl. Phys. 95(7), 3482–3494 (2004)

    Article  Google Scholar 

  13. Gonthier, K.A., Jogi, V.: Multiscale shock heating analysis of a granular explosive. J. Appl. Mech. 76(4), 538–552 (2005)

    Article  Google Scholar 

  14. Gonthier, K.A., Cox, C.F.: Predictions for the impact of a granular solid having spatially non-uniform bulk porosity. Comput. Mech. 39, 419–437 (2007)

  15. Gonthier, K.A., Chakravarthy, S.: Shock induced ignition of porous HMX—a computational examination of hot-spot formation rates. In: Proceedings of the 15th International Detonation Symposium, 13–18 July, San Francisco, to appear (2014)

  16. Heavens, S.N., Fields, J.E.: The ignition of a thin layer of explosive by impact. Proc. R. Soc. Lond. Ser. A 338, 77–93 (1974)

    Article  Google Scholar 

  17. Hornung, H.G., Oertel Jr, H., Sandeman, R.J.: Transition to mach reflection of shock waves in steady and pseudo-steady flows with and without relaxation. J. Fluid Mech. 90, 541–560 (1979)

    Article  Google Scholar 

  18. Keshavarz, M.H., Pouretedal, H.R.: Simple empirical method for prediction of impact sensitivity of selected class of explosives. J. Hazard. Mater. 124, 27–33 (2005)

    Article  Google Scholar 

  19. Kimura, E., Oyumi, Y.: Sensitivity of solid rocket propellants for card gap test. Propellants Explos. Pyrotech. 24, 90–94 (1999)

    Article  Google Scholar 

  20. Krishna Mohan, V., Jyothi Bhasu, V.C., Field, J.E.: Role of adiabatic shear bands in initiation of explosives by drop-weight impact. In: Proceedings of Ninth International Symposium on Detonation, pp. 1276–1283 (1989)

  21. Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160, 241–282 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Licht, H.H.: Performance and sensitivity of explosives. Propellants Explos. Pyrotech. 25, 126–132 (2000)

    Article  Google Scholar 

  23. Macek, A.: Sensitivity of explosives. Chem. Rev. 62, 41–63 (1962)

    Article  Google Scholar 

  24. Mandal, A.: Computational examination of compaction wave-boundary interaction in granular explosive. Thesis, Louisiana State University, Baton Rouge, Louisiana (2010) (http://etd.lsu.edu/docs/available/etd-08112010-163505)

  25. McAfee, J.M., Asay, B.W., Campbell, W., Ramsay, J.B.: Deflagration to detonation transition in granular HMX. In: Proceedings of the Ninth International Symposium on Detonation, pp. 265–278 (1989)

  26. McAfee, J.M.: Characterization of high-explosive initiation and safety at Los Alamos. Los Alamos National Laboratory Technical Report, LA-UR-94-3316 (1994)

  27. Panchadhar, R., Gonthier, K.A.: Mesoscale analysis of volumetric and surface dissipation in granular explosive induced by uniaxial deformation waves. Shock Waves 21(1), 43–61 (2010)

    Article  Google Scholar 

  28. Powers, J.M., Stewart, D.S., Krier, H.: Analysis of steady compaction waves in porous materials. J. Appl. Mech. 56, 15–24 (1989)

    Article  Google Scholar 

  29. Rao, P., Gonthier, K.A.: Reactive burn modeling of porous solid explosives. American Institute of Aeronautics and Astronautics Paper AIAA 2014-2810. Presented at the AIAA Propulsion and Energy Forum and Exposition, Cleveland, Ohio, 28–30 July (2014)

  30. Sandusky, H.W., Liddiard, T.P.: Dynamic compaction of porous beds. NSWC TR 83-246, Naval Surface Weapons Center (1985)

  31. Sheffield, S.A., Gustavsen, R.L., Anderson, M.U.: Shock Loading of Porous High Explosives. High-Pressure Shock Compression of Solids, vol. IV, pp. 24–61. Springer-Verlag, New York (1997)

    Google Scholar 

  32. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  33. Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5(3), 506–517 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  34. Walley, S.M., Field, J.E., Palmer, S.J.P.: Impact sensitivity of propellants. Proc. Math. Phys. Sci. 438(1904), 571–583 (1992)

    Article  Google Scholar 

  35. Wilson, W.H., Tasker, D.G., Dick, R.D., Lee, R.J.: Initiation of explosives under high deformation loading conditions. In: Proceedings of the Eleventh Detonation (International) Symposium, pp. 565–572. Snowmass (1998)

  36. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding for this work provided by the U.S. Air Force Office of Scientific Research (AFOSR) under Contract Number FA9550-06-1-0121 and the U.S. Air Force Research Laboratory (AFRL-MNME), Eglin AFB, Florida, under Contract Number FA8651-06-1-0005. Portions of this research were conducted with high-performance computational resources provided by Louisiana State University (http://www.hpc.lsu.edu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Gonthier.

Additional information

Communicated by F. Zhang and A. Higgins.

Appendix: Constitutive relations for granular HMX

Appendix: Constitutive relations for granular HMX

Constitutive relations used in this study describe the state behavior of the solid component HMX and the compaction behavior of granular HMX.

A Mie-Grüneisen equation of state is used to describe the thermodynamics:

$$\begin{aligned} P_\mathrm{s} = P_H + \frac{\varGamma }{\nu _{s0}}\left( e_\mathrm{s} - e_H\right) , \end{aligned}$$
(57)

where \(\nu _{s0} = 1/\rho _{s0}\) is the initial mass-specific volume and \(\varGamma \) is a constant Grüneisen coefficient. The functions \(P_H(\nu _\mathrm{s})\) and \(e_H(\nu _\mathrm{s})\) are defined by

$$\begin{aligned} P_H&\equiv \left[ \frac{\omega }{\nu _{s0} - s\left( \nu _{s0} - \nu _\mathrm{s}\right) }\right] ^2 \left( \nu _{s0} - \nu _\mathrm{s}\right) , \nonumber \\ e_H&\equiv \frac{1}{2}\left[ \frac{\omega \left( \nu _{s0} - \nu _\mathrm{s}\right) }{\nu _{s0} - s\left( \nu _{s0} - \nu _\mathrm{s}\right) }\right] ^2, \end{aligned}$$
(58)

where \(\nu _\mathrm{s} = 1/\rho _\mathrm{s}\) is the local mass-specific volume. This incomplete equation of state is compatible with the shock Hugoniot \(D = \omega + s U_p\), where D is the shock speed, \(U_p\) is the particle velocity behind the shock, and \(\omega \) and s are empirically determined constants [9]. The equation of state is completed by the caloric equation \(e_\mathrm{s} = c_v \left( T_\mathrm{s} - T_{0}\right) \), where \(c_v\) is the constant volume specific heat and \(T_{0}\) is the initial temperature. Values of the constant parameters used for the equation of state are listed in Table 2.

Table 2 Values of the parameters used with the Mie-Grüneisen equation of state for HMX

The sound speed of HMX is needed for use with the shock-capturing numerical technique. It is defined by

$$\begin{aligned} {c}^2 \equiv \left. \frac{\partial P_\mathrm{s}}{\partial \rho _\mathrm{s}}\right| _\eta = \left. \frac{\partial P_\mathrm{s}}{\partial \rho _\mathrm{s}}\right| _{e_\mathrm{s}} + \frac{P_\mathrm{s}}{\rho _s} \varGamma , \end{aligned}$$
(59)

where \(\eta \) is the solid entropy. Based on the Mie-Grüneisen equation of state

$$\begin{aligned} \left. \frac{\partial P_\mathrm{s}}{\partial \nu _\mathrm{s}}\right| _{e_\mathrm{s}} = \frac{\mathrm{d}P_H}{\mathrm{d}\nu _\mathrm{s}} - \frac{\varGamma }{\nu _{s0}} \frac{\mathrm{d}e_H}{\mathrm{d}\nu _\mathrm{s}}, \end{aligned}$$
(60)

where

$$\begin{aligned} \frac{\mathrm{d}P_H}{\mathrm{d}\nu _\mathrm{s}}= & {} - \left[ \frac{\omega }{\nu _{s0} - s \left( \nu _{s0}-\nu _\mathrm{s}\right) }\right] ^2 \left[ 1+ \frac{2s\left( \nu _{s0}-\nu _\mathrm{s}\right) }{\nu _{s0}-s\left( \nu _{s0}-\nu _\mathrm{s}\right) }\right] , \nonumber \\\end{aligned}$$
(61)
$$\begin{aligned} \frac{\mathrm{d}e_H}{\mathrm{d}\nu _\mathrm{s}}= & {} -\left( \nu _{s0}-\nu _\mathrm{s}\right) \left[ \frac{\omega }{\nu _{s0}-s \left( \nu _{s0}-\nu _\mathrm{s}\right) }\right] ^2 \nonumber \\&\times \left[ 1 + \frac{s\left( \nu _{s0} - \nu _\mathrm{s}\right) }{\nu _{s0}-s \left( \nu _{s0}-\nu _\mathrm{s}\right) }\right] . \end{aligned}$$
(62)

Expressions for the compaction of granular HMX are based on quasi-static data [5, 6]. The intergranular stress \(\beta \) and the yield surface for onset of inelastic volumetric deformation f are given by

$$\begin{aligned}&\beta (\rho _\mathrm{s},\phi ,\tilde{\phi }) = - \beta _c \frac{\rho _\mathrm{s}}{\rho _{s0}} \phi \left( \phi -\tilde{\phi }\right) \frac{\ln \left( \kappa -\left( \phi -\tilde{\phi }\right) \right) }{\kappa - \left( \phi -\tilde{\phi }\right) }, \end{aligned}$$
(63)
$$\begin{aligned}&f(\phi ) = \phi _{fp} + c \left( \phi - \phi _{fp}\right) , \end{aligned}$$
(64)

where \(\beta _c = 6.0\) MPa, \(c = 0.913\), \(\kappa = 0.03\), and \(\phi _{fp} = 0.655\) [10]. This expression for \(\beta \) is a monotonically increasing function of the elastic component of volume fraction \(\phi -\tilde{\phi }\) and contains a linear dependence on solid density as required by thermodynamic constraints [14]. The expression for f is a monotonically increasing function of \(\phi \) which is indicative of work hardening. Using (63), the following expression for the compaction potential energy \( B = \int _0^{(\phi -\tilde{\phi })} \frac{\beta }{\rho _\mathrm{s} \phi }\, d(\phi - \tilde{\phi })\) is obtained:

$$\begin{aligned} B(\phi -\tilde{\phi }) =&\frac{\beta _c}{\rho _{s0}} \biggl \{\frac{\kappa }{2}\left[ \left( \ln \left( \kappa - \left( \phi -\tilde{\phi }\right) \right) \right) ^2 - \left( \ln \kappa \right) ^2\right] \biggr . \nonumber \\&-\biggl .\left( \kappa - \left( \phi -\tilde{\phi }\right) \right) \biggr . \nonumber \\&\times \biggl . \left[ \ln \left( \kappa -\left( \phi -\tilde{\phi }\right) \right) - 1\right] + \kappa \left( \ln \kappa -1\right) \biggr \}. \end{aligned}$$
(65)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, A., Gonthier, K.A. Thermomechanics of transient oblique compaction shock reflection from a rigid boundary. Shock Waves 25, 589–610 (2015). https://doi.org/10.1007/s00193-015-0583-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-015-0583-2

Keywords

Navigation