Skip to main content
Log in

Modeling wall effects in a micro-scale shock tube using hybrid MD–DSMC algorithm

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Wall effects in a micro-scale shock tube are investigated using the Direct Simulation Monte Carlo method as well as a hybrid Molecular Dynamics–Direct Simulation Monte Carlo algorithm. In the Direct Simulation Monte Carlo simulations, the Cercignani–Lampis–Lord model of gas–surface interactions is employed to incorporate the wall effects, and it is shown that the shock attenuation is significantly affected by the choice of the values of tangential momentum accommodation coefficient. A loosely coupled Molecular Dynamics–Direct Simulation Monte Carlo approach is then employed to demonstrate incomplete accommodation in micro-scale shock tube flows. This approach uses fixed values of the accommodation coefficients in the gas–surface interaction model, with their values determined from a separate dynamically similar Molecular Dynamics simulation. Finally, a completely coupled Molecular Dynamics–Direct Simulation Monte Carlo algorithm is used, wherein the bulk of the flow is modeled using Direct Simulation Monte Carlo, while the interaction of gas molecules with the shock tube walls is modeled using Molecular Dynamics. The two regions are separate and coupled both ways using buffer zones and a bootstrap coupling algorithm that accounts for the mismatch of the number of molecules in both regions. It is shown that the hybrid method captures the effect of local properties that cannot be captured using a single value of accommodation coefficient for the entire domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mirshekari, G., Brouillette, M.: Micro-scale shock tube. J. Microelectromech. Syst. 21(3), 739–748 (2012)

    Article  Google Scholar 

  2. Delius, M.: Medical applications and bio-effects of extracorporeal shock waves. Shock Waves 4, 55–72 (1994)

    Article  Google Scholar 

  3. Jagadeesh, G., Takayama, K.: Novel applications of micro-shock waves in biological sciences. J. Indian Inst. Sci. 82, 1–10 (2002)

    Google Scholar 

  4. Hosseini, S., Takayama, K.: Study of micro shock waves and cavi-tation generated by Ho:YAG laser beam for medical application. In: 15th Australasian Fluid Mechanics Conference, Sydney (2004)

  5. Duff, R.E.: Shock-tube performance at low initial pressure. Phys. Fluids 2, 207–216 (1959)

    Article  MATH  Google Scholar 

  6. Roshko, A.: On flow duration in low-pressure shock tubes. Phys. Fluids 3, 835–842 (1960)

    Article  Google Scholar 

  7. Mirels, H.: Test time in low-pressure shock tubes. Phys. Fluids 6, 1201–1214 (1963)

    Article  MATH  Google Scholar 

  8. Brouillette, M.: Shock waves at microscales. Shock Waves 13, 3–12 (2003)

    Article  Google Scholar 

  9. Mirshekari, G., Brouillette, M.: One dimensional model for micro-scale shock tube flow. Shock Waves 19, 25–30 (2009)

    Article  MATH  Google Scholar 

  10. Sun, M., Ogawa, T., Takayama, K.: Shock propagation in narrow channels. In: Lu, F.K. (ed.) Proceedings of 23rd International Symposium Shock Waves, pp. 1320–1326 (2001)

  11. Zeitoun, D., Burtschell, Y.: Navier-stokes computations in micro shock tubes. Shock Waves 15, 241–246 (2006)

    Article  MATH  Google Scholar 

  12. Zeitoun, D., Burtschell, Y., Graur, I., Ivanov, M., Kudryavstev, A., Bondar, Y.: Numerical simulation of shock wave propagation in micro-channels using continuum and kinetic approaches. Shock Waves 19, 307–316 (2009)

  13. Parisse, J., Giordano, J., Perrier, P., Burtschell, Y., Graur, I.: Numerical investigation of micro-shock waves generation. Microfluid Nanofluid 6, 699–709 (2009)

    Article  Google Scholar 

  14. Bird, G.A.: Molecular Gas Dynamics and Direct Simulation of Gas Flows. Oxford University Press, Oxford (1994)

    Google Scholar 

  15. Lord, R.: Some further extensions of Cercignani-Lampis gas surface interaction model. Phys. Fluids 7, 1159–1161 (1995)

    Article  MATH  Google Scholar 

  16. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys 117, 1–19 (1995)

    Article  MATH  Google Scholar 

  17. Alder, B.J., Wainwright, T.E.: Studies in molecular dynamics I. General method. J. Chem. Phys. 31, 459–466 (1959)

    Article  MathSciNet  Google Scholar 

  18. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, Oxford (1987)

    MATH  Google Scholar 

  19. Foiles, S.M., Baskes, M.I., Daw, M.S.: Embedded-atom-method functions for the fcc metals Cu, Ag, Ni, Pd, Pt and their alloys. Phys. Rev. B 33, 7983–7991 (1986)

    Article  Google Scholar 

  20. Yamamoto, K., Takeuchi, H., Hyakutake, T.: Characteristics of reflected gas molecules at a solid surface. Phys. Fluids 18, 046103 (2006)

  21. Cao, B.Y., Sun, J., Chen, M., Guo, Z.: Molecular momentum transport at fluid-solid interfaces in mems nems a review. Int. J. Mol. Sci. 10, 4638–4706 (2009)

    Article  Google Scholar 

  22. Zeifman, M.I., Garrison, B.J., Zhigilei, L.V.: A hybrid MD-DSMC model of picosecond laser ablation and desorption. In: AIP Conference Proceedings, vol. 663, pp. 939–946 (2003)

  23. Nedea, S.V., Frijns, A.J.H., van Steenhoven, A.A., Markvoort, A.J., Hilbers, P.A.J.: Hybrid method coupling molecular dynamics and Monte Carlo simulations to study the properties of gases in microchannels and nanochannels. Phys. Rev. E 72, 016705 (2005)

  24. Gu, K., Watkins, C.B., Koplik, J.: Atomistic hybrid DSMC-NEMD method for nonequilibrium multiscale simulations. J. Comput. Phys 229, 1381–1400 (2010)

  25. Efron, B.: Bootstrap methods: another look at the jackknife. Ann. Stat. 7(1), 1–26 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  26. Maurer, J., Tabeling, P., Joseph, P., Willaime, H.: Second-order slip laws in microchannels for helium and nitrogen. Phys. Fluids 15, 2613–2621 (2003)

    Article  MATH  Google Scholar 

  27. Hsieh, S., Tsai, H., Lin, C., Huang, C., Chien, C.: Gas flow in a long microchannel. Int. J. Heat Mass Transf. 47, 3877–3887 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Puranik.

Additional information

Communicated by D. Ranjan.

This paper is based on work that was presented at the 29th International Symposium on Shock Waves, Madison, Wisconsin, USA, July 14–19, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watvisave, D.S., Puranik, B.P. & Bhandarkar, U.V. Modeling wall effects in a micro-scale shock tube using hybrid MD–DSMC algorithm. Shock Waves 26, 477–489 (2016). https://doi.org/10.1007/s00193-015-0578-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-015-0578-z

Keywords

Navigation