Skip to main content
Log in

Testing an analytic model for Richtmyer–Meshkov turbulent mixing widths

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

We discuss a model for the evolution of the turbulent mixing width \(h(t)\) after a shock or a reshock passes through the interface between two fluids of densities \(\rho _A\) and \(\rho _B\) inducing a velocity jump \(\Delta V\). In this model, the initial growth rate is independent of the surface finish or initial mixing width \(h_0\), but its duration \(t^{*}\) is directly proportional to it: \(h(t)=h_0 +2\alpha A\Delta Vt\) for \(0\le t\le t^{*}\), and \(h(t)=h^{*}({1+(\dot{h}^{*}/\theta h^{*})(t-t^{*})})^{\theta }\) for \(t\ge t^{*}\). Here \(A\) is the Atwood number \((\rho _B -\rho _A)/(\rho _B +\rho _A), \alpha \) and \(\theta \) are dimensionless, \(A\)-dependent parameters measured in past Rayleigh–Taylor experiments, and \(\beta \) is a new dimensionless parameter we introduce via \(t^{*}=(h_0 /\Delta V)\beta \). The mixing width \(h\) and its derivative \(\dot{h}\) remain continuous at \(t=t^{*}\) since \(h^{*}=h_0 +2\alpha A\Delta Vt^{*}\) and \(\dot{h}^{*}=2\alpha A\Delta V\). We evaluate \(\beta \sim 6\) at \(A\approx 0.7\) from air/SF\(_{6}\) experiments and propose that the transition at \(t=t^{*}\) signals isotropication of turbulence. We apply this model to the recent experiments of Jacobs et al. (Shock Waves 23:407–413, 2013) on shock and reshock, and discuss briefly the third wave causing an unstable acceleration of the interface. We also consider the experiments of Weber et al. (Phys Fluids 24:074105, 2012) and argue that their smaller growth rates reflect density gradient stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\(\rho _A (\rho _B)\) :

Density of fluid \(A\) (fluid \(B\))

\(A\) :

Atwood number

\(M_s\) :

Mach number

\(W_i\) :

Speed of incident shock wave

\(\Delta V\) :

Velocity change of the \(A/B\) interface induced by a shock or reshock

\(g\) :

Acceleration of the \(A/B\) interface

\(y\) :

Coordinate along which a shock moves, usually vertical. Also, coordinate of a density gradient between fluids \(A\) and \(B\)

\(x\) :

Coordinate transverse to \(y\)

\(\lambda \) :

Wavelength of a perturbation

\(k\) :

\(2\pi /\lambda \)

\(\eta \) :

Perturbation amplitude

\(\eta _0\) :

Initial value of \(\eta \)

\(\dot{\eta }_0\) :

Initial value of \(\mathrm{d}\eta /\mathrm{d}t\)

\(\gamma \) :

Growth rate of a Rayleigh–Taylor (RT) perturbation

\(\Gamma \) :

\(\gamma /\sqrt{g}\)

b:

Superscript denoting the bubble part of a perturbation or turbulent mixing width into the heavier fluid

s:

Superscript denoting the spike part of a perturbation or turbulent mixing width into the lighter fluid

\(h\) :

Turbulent mixing width

\(h_0\) :

Initial value of \(h\)

\(\dot{h}_0\) :

Initial value of \(\mathrm{d}h/\mathrm{d}t\)

\(\alpha \) :

Coefficient for the turbulent mixing width in a constant acceleration

\(\theta \) :

Power for the evolution of \(h\) when \(g=0\)

\(t^{*}\) :

Time after shock or reshock when \(h\) changes from growth linear with time (\(h\sim \alpha t)\) to power-law growth \((h\sim t^{\theta })\)

\(h^{*}\) :

\(h(t=t^{*})\)

\(\dot{h}^{*}\) :

\((\mathrm{d}h/\mathrm{d}t)_{t=t^{*}}\)

\(\beta \) :

Nondimensional coefficient relating \(t^{*}\) to \(h_0\) and \(\Delta V\)

\(d\) :

Density gradient scale length

erf:

Error function

erfc:

Complimentary error function \(1-\mathrm{erf}\)

\(D\) :

Diffusion coefficient

References

  1. Rayleigh, L.: Scientific Papers, vol. II. Cambridge University Press, Cambridge (1900)

    MATH  Google Scholar 

  2. Taylor, G.I.: The instability of liquid surfaces when accelerated in a direction perpendicular to their planes I. Proc. R. Soc. Lond. Ser. A 201, 192–196 (1950)

    Article  MATH  Google Scholar 

  3. Richtmyer, R.D.: Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math. 13, 297–319 (1960)

    Article  MathSciNet  Google Scholar 

  4. Meshkov, E.E.: Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 4, 101–104 (1969)

    Article  MathSciNet  Google Scholar 

  5. Lindl, J.D.: Inertial Confinement Fusion. Springer, New York (1998)

    Google Scholar 

  6. Arnett, D.: Supernovae and Nucleosynthesis. Princeton University Press, Princeton (1996)

    Google Scholar 

  7. Layzer, D.: On the instability of superposed fluids in a gravitational field. Astrophys. J. 122, 1–12 (1955)

    Article  MathSciNet  Google Scholar 

  8. Mikaelian, K.O.: Analytic approach to nonlinear Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Rev. Lett. 80, 508–511 (1998)

    Article  Google Scholar 

  9. Goncharov, V.N.: Analytical model for nonlinear, single-mode, classical Rayleigh–Taylor instability at arbitrary Atwood numbers. Phys. Rev. Lett. 88, 134502 (2002)

    Article  Google Scholar 

  10. Mikaelian, K.O.: Analytic approach to nonlinear hydrodynamic instabilities driven by time-dependent accelerations. Phys. Rev. E 81, 016325 (2010)

    Article  Google Scholar 

  11. Youngs, D.L.: Numerical simulation of turbulent mixing by Rayleigh–Taylor instability. Phys. D 12, 32–44 (1984)

    Article  Google Scholar 

  12. Read, K.I.: Experimental investigation of turbulent mixing by Rayleigh–Taylor instability. Phys. D 12, 45–58 (1984)

    Article  Google Scholar 

  13. Dimonte, G., Youngs, D.L., Dimits, A., Weber, S., Marinak, M., Wunsch, S., Garasi, C., Robinson, A., Andrews, M.J., Ramaprabhu, P., Calder, A.C., Fryxell, B., Biello, J., Dursi, L., MacNeice, P., Olson, K., Ricker, P., Rosner, R., Timmes, F., Tufo, H., Young, Y.-N., Zingale, M.: A comparative study of the turbulent Rayleigh–Taylor instability using high-resolution three-dimensional numerical simulations: the Alpha-Group collaboration. Phys. Fluids 16, 1668–1693 (2004)

    Article  Google Scholar 

  14. Snider, D.M., Andrews, M.J.: Rayleigh–Taylor and shear-driven mixing with an unstable thermal stratification. Phys. Fluids 6, 3324–3334 (1994)

    Article  Google Scholar 

  15. Dimonte, G., Schneider, M.: Turbulent Rayleigh–Taylor instability experiments with variable acceleration. Phys. Rev. E 54, 3740–3743 (1996)

    Article  Google Scholar 

  16. Edwards, J., Glendinning, S.G., Suter, L.J., Remington, B.A., Landen, O., Turner, R.E., Shepard, T.J., Lasinski, B., Budil, K., Robey, H., Kane, J., Louis, H., Wallace, R., Graham, P., Dunne, M., Thomas, B.R.: Turbulent hydrodynamics experiments using a new plasma piston. Phys. Plasmas 7, 2099–2107 (2000)

    Article  Google Scholar 

  17. Ramaprabhu, P., Andrews, M.J.: Experimental investigation of Rayleigh–Taylor mixing at small Atwood numbers. J. Fluid Mech. 502, 233–271 (2004)

    Article  MATH  Google Scholar 

  18. Olson, D.H., Jacobs, J.W.: Experimental study of Rayleigh–Taylor instability with a complex initial perturbation. Phys. Fluids 21, 034103 (2009)

    Article  Google Scholar 

  19. Ramaprabhu, P., Dimonte, G., Andrews, M.J.: A numerical study of the influence of initial perturbations on the turbulent Rayleigh–Taylor instability. J. Fluid Mech. 536, 285–319 (2005)

  20. Dimonte, G.: Dependence of turbulent Rayleigh–Taylor instability on initial perturbations. Phys. Rev. E 69, 056305 (2004)

    Article  Google Scholar 

  21. Kraft, W.N., Andrews, M.J.: Experimental investigation of unstably stratified buoyant wakes. J. Fluid Eng. 3, 488–493 (2006)

    Article  Google Scholar 

  22. Dimonte, G., Schneider, M.: Density ratio dependence of Rayleigh–Taylor mixing for sustained and impulsive acceleration histories. Phys. Fluids 12, 304–321 (2000)

    Article  MATH  Google Scholar 

  23. Mikaelian, K.O.: Turbulent mixing generated by Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. D 36, 343–357 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Vetter, M., Sturtevant, B.: Experiments on the Richtmyer–Meshkov instability of an \(\text{ air/SF }_{6}\) interface. Shock Waves 4, 247–252 (1995)

    Article  Google Scholar 

  25. Erez, L., Sadot, O., Oron, D., Erez, G., Levin, L.A., Shvarts, D., Ben-Dor, G.: Study of the membrane effect on turbulent mixing measurements in shock tubes. Shock Waves 10, 241–251 (2000)

    Article  Google Scholar 

  26. Leinov, E., Malamud, G., Elbaz, Y., Levin, L.A., Ben-Dor, G., Shvarts, D., Sadot, O.: Experimental and numerical investigation of the Richtmyer–Meshkov instability under re-shock conditions. J. Fluid Mech. 626, 449–475 (2009)

    Article  MATH  Google Scholar 

  27. Mikaelian, K.O.: Extended model for Richtmyer–Meshkov mix. Phys. D 240, 935–942 (2011)

    Article  MATH  Google Scholar 

  28. Jacobs, J.W., Krivets, V.V., Tsiklashvili, V.: Experiments on the Richtmyer–Meshkov instability with an imposed, random initial perturbation. Shock Waves 23, 407–413 (2013)

    Article  Google Scholar 

  29. Weber, C., Haehn, N., Oakley, J., Rothamer, D., Bonazza, R.: Turbulent mixing measurements in the Richtmyer–Meshkov instability. Phys. Fluids 24, 074105 (2012)

    Article  Google Scholar 

  30. Meyer, K.A., Blewett, P.J.: Numerical investigation of the stability at shocked interfaces. Phys. Fluids 15, 753–759 (1972)

    Article  Google Scholar 

  31. Vandenboomgaerde, M., Mügler, C., Gauthier, S.: Impulsive model for the Richtmyer–Meshkov instability. Phys. Rev. E 58, 1874–1882 (1998)

    Article  Google Scholar 

  32. Tipton, R.E.: A 2D Lagrange MHD code. In: Fowler, C.M., Caird, R.S., Erickson, D.J. (eds.) Megagauss Technology and Pulsed Power Applications. Plenum Press, New York (1987)

  33. Jacobs, J.W., Krivets, V.V.: Experiments on the late-time development of single-mode Richtmyer–Meshkov instability. Phys. Fluids 17, 034105 (2005)

    Article  Google Scholar 

  34. Collins, B.D., Jacobs, J.W.: PLIF flow visualization and measurements of the Richtmyer–Meshkov instability of an \(\text{ air/SF }_{6}\) interface. J. Fluid Mech. 464, 113–136 (2002)

    Article  MATH  Google Scholar 

  35. Ristorcelli, J.R., Clark, T.T.: Rayleigh–Taylor turbulence: self-similar analysis and direct numerical simulations. J. Fluid Mech. 507, 213–253 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Cook, A.W., Cabot, W., Miller, P.L.: The mixing transition in Rayleigh–Taylor instability. J. Fluid Mech. 511, 333–362 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Weber, C.R.: Turbulent mixing measurements in the Richtmyer–Meshkov instability. Ph.D thesis, The University of Wisconsin-Madison (2013)

  38. Valancius, C.: Experimental turbulent development and reshock analysis of the three-dimensional, multimodal Richtmyer–Meshkov instability. MS thesis, The University of Arizona (2010)

  39. Le Levier, R., Lasher, G.J., Bjorklund, F.: Effect of a density gradient on Taylor instability. University of California Report No. UCRL-4459 (unpublished) (1955)

  40. Duff, R.E., Harlow, F.H., Hirt, C.W.: Effect of diffusion on interface instability between gases. Phys. Fluids 5, 417–425 (1962)

    Article  MATH  Google Scholar 

  41. Brouillette, M., Sturtevant, B.: Experiments on the Richtmyer–Meshkov instability: single-scale perturbations on a continuous interface. J. Fluid Mech. 263, 271–292 (1994)

    Article  Google Scholar 

  42. Mikaelian, K.O.: Density gradient stabilization of the Richtmyer–Meshkov instability. Phys. Fluids A 3, 2638–2643 (1991)

    Article  MATH  Google Scholar 

  43. Faddeeva, V.N., Terent’ev, N.M.: Tables of values of the probability integral for complex arguments. Gosud. Izdat. Tech.-Teor. Lit., State Publishing House for Technical Theoretical Literature, Moscow (1954)

  44. Cherfils, C., Mikaelian, K.O.: Simple model for the turbulent mixing width at an ablating surface. Phys. Fluids 8, 522–535 (1996)

    Article  MATH  Google Scholar 

  45. McFarland, J.A., Greenough, J.A., Ranjan, D.: Computational parametric study of a Richtmyer–Meshkov instability for an inclined interface. Phys. Rev. A 84, 026303 (2011)

    Google Scholar 

  46. McFarland, J.A., Greenough, J.A., Ranjan, D.: Investigation of the initial perturbation amplitude for the inclined interface Richtmyer–Meshkov instability. Phys. Scr. T155, 014014 (2013)

    Article  Google Scholar 

  47. Ofer, D., Shvarts, D., Zinamon, Z., Orszag, S.A.: Mode coupling in nonlinear Rayleigh–Taylor instability. Phys. Fluids B 4, 3549–3561 (1992)

  48. Sadot, O., Rikanati, A., Oron, D., Ben-Dor, G., Shvarts, D.: An experimental study of the high Mach number and high initial-amplitude effects on the evolution of the single-mode Richtmyer–Meshkov instability. Laser Part. Beams 21, 341–346 (2003)

  49. Long, C.C., Krivets, V.V., Greenough, J.A., Jacobs, J.W.: Shock tube experiments and numerical simulation of the single-mode, three-dimensional Richtmyer–Meshkov instability. Phys. Fluids 21, 114104 (2009)

    Article  Google Scholar 

  50. Motl, B., Oakley, J., Ranjan, D., Weber, C., Anderson, M., Bonazza, R.: Experimental validation of a Richtmyer–Meshkov scaling law over large density ratio and shock strength ranges. Phys. Fluids 21, 126102 (2009)

    Article  Google Scholar 

  51. Morgan, R.V., Aure, R., Stockero, J.D., Greenough, J.A., Cabot, W., Likhachev, O.A., Jacobs, J.W.: On the late-time growth of the two-dimensional Richtmyer–Meshkov instability in shock tube experiments. J. Fluid Mech. 712, 354–383 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  52. Thornber, B., Drikakis, D., Youngs, D.L., Williams, R.J.R.: Growth of a Richtmyer–Meshkov turbulent layer after reshock. Phys. Fluids 23, 095107 (2011)

    Article  Google Scholar 

  53. Shi, H.H., Zhang, G., Du, K., Jia, H.X.: Experimental study on the mechanism of the Richtmyer–Meshkov instability of a gas–liquid interface. J. Hydrodyn. 21, 423 (2009)

    Article  Google Scholar 

  54. Mikaelian, K.O.: Richtmyer–Meshkov instabilities in stratified fluids. Phys. Rev. A 31, 410 (1985)

    Article  Google Scholar 

  55. Hurricane, O.A., Callahan, D.A., Casey, D.T., Celliers, P.M., Cerjan, C., Dewald, E.L., Dittrich, T.R., Döppner, T., Hinkel, D.E., Berzak Hopkins, L.F., Kline, J.L., Le Pape, S., Ma, T., MacPhee, A.G., Milovich, J.L., Pak, A., Park, H.-S., Patel, P.K., Remington, B.A., Salmonson, J.D., Springer, P.T., Tommasini, R.: Fuel gain exceeding unity in an inertially confined fusion implosion. Nature 506, 343 (2014)

  56. Salmonson, J.D.: (private communication, 2014)

  57. Buttler, W.T., Oró, D.M., Olson, R.T., Cherne, F.J., Hammerberg, J.E., Hixson, R.S., Monfared, S.K., Pack, C.L., Rigg, P.A., Stone, J.B., Terrones, G.: Second shock ejecta measurements with an explosively driven two-shockwave drive. J. Appl. Phys. 116, 103519 (2014)

    Article  Google Scholar 

  58. Friedman, G., Prestridge, K., Mejia-Alvarez, R., Leftwich, M.: Shock-driven mixing: experimental design and initial conditions. In: AIP Conference Proceedings on Shock Compression of Condensed Matter-2011, vol. 1426, pp. 1647–1650 (2012)

  59. McFarland, J., Reilly, D., Creel, S., McDonald, C., Finn, T., Ranjan, D.: Experimental investigation of the inclined interface Richtmyer–Meshkov instability before and after reshock. Exp. Fluids 55, 1640 (2014)

    Article  Google Scholar 

  60. Luo, X., Si, T., Yang, J., Zhai, Z.: A cylindrical converging shock tube for shock-interface studies. Rev. Sci. Instrum. 85, 015107 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

I am grateful to Jeff Jacobs and Vladimer Tsiklashvili for providing the data in Ref. [28], and to Chris Weber for a discussion of the data in [29, 37]. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. O. Mikaelian.

Additional information

Communicated by R. Bonazza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikaelian, K.O. Testing an analytic model for Richtmyer–Meshkov turbulent mixing widths. Shock Waves 25, 35–45 (2015). https://doi.org/10.1007/s00193-014-0537-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-014-0537-0

Keywords

Navigation