Skip to main content
Log in

Half a century of continuous shock interaction investigations in the Joint Institute for High Temperatures of Russian Academy of Sciences

  • Review
  • Published:
Shock Waves Aims and scope Submit manuscript

A Publisher's Erratum to this article was published on 30 October 2014

Abstract

This article describes the history of the investigations of shock wave interactions at the Physical Gasdynamic Department, starting from the early 50s of the last century, when the first research related to missile reentry was made. The review focuses on a number of topics studied over more than 50 years and includes the study of strong shock waves, where it is necessary to take into account the physicochemical transformations in gases, shock wave reflection, diffraction, interaction with the boundary layer and with the nozzle, as well as detonation wave formation and interactions. The investigation of shock wave interactions is a current topic at the Joint Institute for High Temperatures of the Russian Academy of Sciences. Some new results are observed: the formation of impulse jets and the self-ignition of a cold hydrogen jet, diffraction of 3D shock waves, and the effect of an impulse jet and diffracted shock wave on an obstacle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

References

  1. Baklanov, D.I., Gvozdeva, L.G., Scherbak, N.B.: The formation of high-speed gas flow at combustion in the regime of multi-step detonation. In: Roy, G., Frolov, S., Kailasanath, K., Smirnov, N. (eds.) Gases and Heterogeneous Detonations: Science to Applications, pp. 141–152. ENAS Publishers, Moscow (1999)

    Google Scholar 

  2. Baklanov, D., Gvozdeva, L., Scherbak, N.: The formation of high-speed gas flow in frequency mode during non-stationary propagation of detonation. AIAA Paper 98–2562 (1998)

  3. Baklanov, D.I., Gvozdeva, L.G., Scherbak, N.B.: Detonation of hydrocarbon-air mixtures in a pulse detonation chamber. In: Roy, G., Frolov, S., Santuro, R., Tsyganov, S. (eds.) Confined Detonation and Pulse Detonation Engines, pp. 271–286. Torus Press, Moscow (2003)

    Google Scholar 

  4. Baklanov, D.I., Gvozdeva, L.G.: Non-Stationary processes of burning in detonation waves propagating the channels of variable cross-section. Russ. J. High Temp. 33(6), 958–961 (1995)

    Google Scholar 

  5. Bazarov, S.B., Bazhenova, T.V., Bulat, O.V., Golub, V.V., Shulmeister, A.M.: Three-dimensional diffraction of shock wave. In: Takayama, K. (ed.) Shock Waves, pp. 251–254. Springer, Berlin (1992)

    Chapter  Google Scholar 

  6. Bazhenova, T.V., Bazarov, S.V., Bormotova, T.A., Golub, V.V., Shulmeister, A.M.: Action of a diffracted shock wave on an obstacle. Fluid Dyn. 34(4), 546–550 (1999)

    Google Scholar 

  7. Bazhenova, T.V., Bazarov, S.V., Bulat, O.V., Golub, V.V., Shulmeister, A.M.: Three-dimensional diffraction of shock wave. Fluid Dyn. 28, 153–154 (1993)

    Article  Google Scholar 

  8. Bazhenova, T.V., Bazarov, S.V., Bulat, O.V., Golub, V.V., Shulmeister, A.M.: Experimental and numerical study of shock wave attenuation at the outlet of two-dimensional and axisymmetric ducts. Fluid Dyn. 28, 590–592 (1993)

    Article  Google Scholar 

  9. Bazhenova, T.V., Bazarov, S.V., Bulat, O.V., Golub, V.V., Shulmeister, A.M., Bormotova, T.A.: Shock wave diffraction from a square channel. High Temp. 35(2), 350 (1997)

    Google Scholar 

  10. Bazhenova, T.V., Bazarov, S.V., Golub, V.V., Shulmeister, A.M., Bormotova, T.A.: Interaction of supersonic pulse jet with an obstacle. Fluid Dyn. 33(2), 190–195 (1998)

    Article  Google Scholar 

  11. Bazhenova, T.V., Bormotova, T.A., Golub, V.V., Kotelnikov, A.L., Chizhikov, A.S.: The total pressure losses in a flow behind a shock wave emerging from channels of various geometries. Tech. Phys. Lett. 27(8), 669–670 (2001)

    Article  Google Scholar 

  12. Bazhenova, T.V., Bormotova, T.A., Golub, V.V., Kotelnikov, A.L., Chizhikov, A.S., Shcherbak, S.B.: Three-dimensional effects and the interaction between an obstacle and a shock wave discharged from a channel. High Temp. 40(2), 222–227 (2002)

    Article  Google Scholar 

  13. Bazhenova, T.V., Bormotova, T.A., Golub, V.V., Kotelnikov, A.L., Makeich, A.A., Shcherbak, S.B.: The formation of vortex shocks in a 3D subsonic flow behind a weak shock wave emerging from a channel. Tech. Phys. Lett. 28(8), 687–689 (2002)

    Article  Google Scholar 

  14. Bazhenova, T.V., Bormotova, T.A., Golub, V.V., Novikov, S.A., Shcherbak, S.B.: Effect of shock waves outgoing from partly blocked channel upon an obstacle. Tech. Phys. Lett. 26(8), 659–661 (2000)

    Article  Google Scholar 

  15. Bazhenova, T.V., Bormotova, T.A., Golub, V.V., Novikov, S.A., Shcherbak, S.B.: Flow separation behind the shock wave diffracted from the square and circular cross-section tubes. In: Hillier, R. (ed.) 22nd International Symposium on Shock Waves, London, pp. 935–941 (1999)

  16. Bazhenova, T.V., Bormotova, T.A., Golub, V.V., Osminina, N.V., Shulmeister, A.M., Shcherbak, S.B.: Diffraction of a shock wave from a square channel at a ninety degree convex corner. Fluid Dyn. 34(3), 395–399 (1999)

    Google Scholar 

  17. Bazhenova, T.V., Bragin, M.V., Golub, V.V., Ivanov, M.F.: Self-ignition of a fuel gas upon pulsed efflux into an oxidative medium. Tech. Phys. Lett. 32(3), 269–271 (2006)

    Article  Google Scholar 

  18. Bazhenova, T.V., Bragin, M.V., Golub, V.V., Ivanov, M.F.: The shock-wave mechanism of spontaneous ignition of hydrogen under conditions of sudden efflux from reservoir at high pressure. High Temp. 45(5), 665–672 (2007)

    Article  Google Scholar 

  19. Bazhenova, T.V., Bragin, M.V., Golub, V.V., Scherbak, S.B., Volodin, V.V.: Self-ignition of the impulse hydrogen sonic jet emerging in the air semiconfined space. In: 25th International Symposium on Shock Waves, Bangalore, India (2005)

  20. Bazhenova, T.V., Chizhikov, A.S., Golub, V.V., Kotelnikov, A.L.: Action on the obstacle of a shock wave discharged from a partly closed channel. In: 24th International Symposium on Shock Waves, Beijing, China (2004)

  21. Bazhenova, T.V., Golovastov, S.V., Baklanov, D.I., Ivanov, K.V., Volodin, V.V.: Experimental investigation of spontaneous ignition of hydrogen jetting in tube. In: 27th International Symposium on Shock Waves, Saint-Petersburg, Russia (2009)

  22. Bazhenova, T.V., Golovastov, S.V., Golub, V.V., Laskin, I.N., Semin, N.V.: Diffusion controlled autoignition of hydrogen outflowing into air-filled channel. Russ. J. Phys. Chem. 3(6), 917–922 (2009)

    Article  Google Scholar 

  23. Bazhenova, T.V., Golub, V.V., Bormotova, T.A., Novikov, S.A., Shcherbak, S.B.: Flow expansion behind a shock wave discharged from a channel. High Temp. 39(1), 119–123 (2001)

    Article  Google Scholar 

  24. Bazhenova, T.V., Golub, V.V., Bormotova, T.A., Osminina, N.V., Shulmeister, A.M., Sherbak, S.B.: Non self-similar diffraction of the shock waves. In: Howling, A. (ed.) 21st International Symposium on Shock Waves, pp. 195–199. Australia, Great Keppel (1997)

  25. Bazhenova, T.V., Golub, V.V., Chizhikov, A.S.: Decreasing the action of a flow behind a weak shock wave emerging from a channel upon an obstacle. Tech. Phys. Lett. 31(6), 503–505 (2005)

    Article  Google Scholar 

  26. Bazhenova, T.V., Golub, V.V., Kotelnikov, A.L., Chizhikov, A.S., Bragin, M.V., Shcherbak, S.B.: Increasing the force with which a shock wave discharged from the channel acts on an obstacle by way of converting a normal pressure shock to a system of oblique shocks. High Temp. 42(6), 911–918 (2004)

    Article  Google Scholar 

  27. Bazhenova, T.V., Golub, V.V., Kotelnikov, A.L., Chizhikov, A.S., Bragin, M.V.: Growth of the total pressure recovery factor in a flow behind a shock wave emerging from a channel with concave corners in cross section. Tech. Phys. Lett. 29(5), 385–387 (2003)

    Google Scholar 

  28. Bazhenova, T.V., Golub, V.V., Kotelnikov, A.L., Chizhikov, A.S., Shcherbak, S.B.: Effect of partial closure of the channel on the pressure pulse in a shock wave emerging from a duct. Fluid Dyn. 38(2), 336–342 (2003)

    Article  MATH  Google Scholar 

  29. Bazhenova, T.V., Golub, V.V., Laskin, I.N., Semin, N.V.: Prevention of hydrogen self-ignition at technical opening via replacement of the orifice by several smaller ones. In: 22nd International Colloquium on the Dynamics of Explosions and Reactive Systems, Minsk, Belarus (2009)

  30. Bazhenova, T.V., Golub, V.V., Shulmeister, A.M., Bazarov, S.V.: Three-dimensional nonstationary ejection from channel. In: Brun, R. (ed.) Shock Waves–Marseille IV, pp. 135–139. Springer, Berlin (1995)

    Google Scholar 

  31. Bazhenova, T.V., Golub, V.V., Shulmeister, A.M., Bormotova, T.A., Bazarov, S.V.: Shock wave interaction at the impingement of impulsive supersonic jet upon obstacle. In: Sturtevant, B., Shepard, J., Hornung, H. (eds) Shock Waves. Proc. 20th ISSW, pp. 441–446. World Scientific, Singapore (1996)

  32. Bazhenova, T.V., Golub, V.V., Shulmeister, A.M., Bormotova, T.A., Bazarov, S.V.: Interference studies of interaction between an impulsive supersonic jet and flat plate. Trans. J. Mech. Comb., London (1996)

    Google Scholar 

  33. Bazhenova, T.V., Golub, V.V., Shulmeister, A.M., Bormotova, T.A., Pichugin, S.M.: The interaction of the shock wave discharged from an open end of a shock tube with a plate. In: Sturtevant, B., Shepard, J., Hornung, H. (eds.) Shock Waves. Proc. 20th ISSW, pp. 477–482. World Scientific, Singapore (1996)

  34. Bazhenova, T.V., Golub, V.V.: Use of gas detonation in a controlled frequency mode (Review). Combust. Explos. Shock Waves 39(4), 365–381 (2003)

    Article  Google Scholar 

  35. Bazhenova, T.V., Gvozdeva, L.G., Fokeev, V.P., Paillard, C., Combourieu, J., Dupre, G., Lisbet, R.: Investigation of the detonation of HN3, Near the Boundaries 21(1), 120–124 (1985) (In Russian)

  36. Bazhenova, T.V., Gvozdeva, L.G., Komarov, V.S., Sukhov, B.G.: Diffraction of strong shock waves in a shock tube. In: J. Stollery, A. Gaydon, P. Owen (eds.), Shock Tube Research, Proceedings 8th International Shock Tube Symposium. Chapman & Hall, London (1971)

  37. Bazhenova, T.V., Gvozdeva, L.G., Komarov, V.S., Sukhov, B.G.: Investigation of strong shock wave diffraction at convex corners. Izd. Akad. Nauk. SSSR, MZhG 4, 122–134 (1973) (In Russian)

    Google Scholar 

  38. Bazhenova, T.V., Gvozdeva, L.G., Komarov, V.S., Sukhov, B.G.: Pressure and temperature changes on wall surface in diffraction of strong shock waves. Astronaut. Acta 17, 659–666 (1972)

    Google Scholar 

  39. Bazhenova, T.V., Gvozdeva, L.G., Lagutov Y. P. at al. (Ed. by V.P. Korobeinikov). Unsteady interactions of shock and detonation waves in gases. N.Y. Hemisphere Publ. Corp. (1989)

  40. Bazhenova, T.V., Gvozdeva, L.G., Lobastov, Y.S., Naboko, I.M., Nemkov, R.G., Prevoditeleva, O.A.: Shock waves in real gases. Nauka, Moscow, In Russian. Engl. transl. NASA TTF-585, Washington, D.C., Oct. (1969)

  41. Bazhenova, T.V., Gvozdeva, L.G., Nettleton, N.A.: Unsteady interactions of shock waves. Prog. Aerosp. Sci. 21, 249–331 (1984)

    Article  Google Scholar 

  42. Bazhenova, T.V., Gvozdeva, L.G., Zhilin, Y.V.: Change in the shape of a diffracting shock wave at a convex corners. Astronaut. Acta 6, 401–412 (1979)

    Article  Google Scholar 

  43. Bazhenova, T.V., Gvozdeva, L.G.: Unsteady interactions of shock waves. In: Grenig, H. (ed.) Shock Tubes and Waves, R-W Techn, pp. 38–49. Hochschule, Aachen (1987)

    Google Scholar 

  44. Bazhenova, T.V., Gvozdeva, L.G.: Unsteady interactions of shock waves. Nauka, Moscow. In Russian (1977)

  45. Bazhenova, T.V., Naboko, I.M., Nemkov, R.G.: Experimental study of the boundary layer effects on the distributions of flow parameters behind a shock wave in a shock tube. In: Glass, I. (ed.) Shock Tubes, pp. 60–67. Univ. of Toronto Press, Toronto (1969)

    Google Scholar 

  46. Bazhenova, T.V., Soloukhin, R.I.: Gas ignition behind the shock wave. In: VII Symposium (Int.) on Combustion, London, pp. 487–494 (1959)

  47. Bazhenova, T.V.: Shock Waves in Real Gases. Springer, Berlin (1973)

    Book  MATH  Google Scholar 

  48. Bulat, O.V., Golub, V.V., Lyakhov, V.N., Shulmeister, A.M.: Interaction between impulse jet and flat plate. In: Flow Visualization VI, Yokohama, pp. 163–166. Springer, Berlin (1992)

  49. Fortov, V.E., Solomonov, Y.S., Golub, V.V., Bazhenova, T.V., Bormotova, T.A., Volodin, V.V., Efremov, V.P., Makeich, A.A., Shcherbak, S.B.: Shock-wave egress from a nozzle into a bounded space. Doklady Phys. 47(12), 856–858 (2002)

    Article  Google Scholar 

  50. Golovastov, S.V., Golub, V.V., Baklanov, D.I., Bazhenova, T.V., Ivanov, M.F., Laskin, I.N., Semin, N.V., Volodin, V.V.: Experimental and numerical investigation of hydrogen gas auto-ignition. Int. J. Hydrogen Energy 34, 14 (2009)

    Article  Google Scholar 

  51. Golub, V.V., Bazhenova, T.V., Bragin, M.V., Ivanov, M.F.: Self-ignition of hydrogen impulse jet outflowing into the air. In: 31st International Symposium on combustion, Heidelberg, Germany (2006)

  52. Golub, V.V., Baklanov, D.I., Bazhenova, T.V., Bragin, M.V., Golovastov, S.V., Ivanov, M.F., Volodin, V.V.: Shock-induced ignition of hydrogen gas during accidental of technical opening of high-pressure tanks. J. Loss Prev. Process Ind. 20(4–6), 439–446 (2007)

    Google Scholar 

  53. Golub, V.V., Baklanov, D.I., Golovastov, S.V., Ivanov, M.F., Laskin, I.N., Saveliev, A.S., Semin, N.V., Volodin, V.V.: Mechanisms of high-pressure hydrogen gas self-ignition in tubes. J. Loss Prev. Process Ind. 21(3), 185–198 (2008)

    Article  Google Scholar 

  54. Golub, V.V., Bazhenova, T.V., Bormotova, T.A., Kotelnikov, A.L., Chizhikov, A.S.: Interaction between the shock waves diffracted from the square or circular cross-section channels and the obstacle. In: Lu, F. (ed.) 23rd International Symposium on Shock Waves. Fort Worth, TX, USA (2002)

  55. Golub, V.V., Bazhenova, T.V., Bormotova, T.A., Kotelnikov, A.L., Novikov, S.A.: Impulse control of the shock wave discharged from the partly closed channel exit. In: Lu, F. (ed.) 23rd International Symposium on Shock Waves. Fort Worth, TX, USA (2002)

  56. Golub, V.V., Bazhenova, T.V., Laskin, I.N., Semin, N.V.: Diffusion self-ignition of hydrogen upon efflux from a nozzle array. Tech. Phys. Lett. 35(3), 200–201 (2009)

    Article  Google Scholar 

  57. Golub, V.V., Bazhenova, T.V., Shulmeister, A.M., Bormotova, T.A.: Development of different kinds of instability during the supersonic jet formation. In: XIX Int. Congress of theoretical and applied mechanics. Kyoto, Japan (1996)

  58. Golub, V.V., Bazhenova, T.V.: Impulsive Supersonic Jet Flows. Nauka, Moscow. In Russian (2008)

  59. Golub, V.V., Naboko, I.M., Shulmeister, A.M.: An investigation of impulse jet outflowing from multinozzle blocks by means of the schlieren installation. In: International Symposium on Optical Methods in Dynamics of Fluids and Solids, Czechoslovakia, pp. 357–363. Springer, Berlin (1985)

  60. Golub, V.V., Polejaev, Y.V.: Jets. In: Hewitt, P., Polejaev, Y., Shires, D. (eds.) International Encyclopedia of Heat and Mass Transfer, pp. 646–649. CRS Press, London (1997)

    Google Scholar 

  61. Golub, V.V., Shulmeister, A.M.: Formation of impulse jets outflowing into rarefied gas. In: 17th International Symposium on Rarefied Gas Dynamics, Aachen, Germany, pp. 616–618 (1990)

  62. Golub, V.V.: Development of shock wave and vortex structures in unsteady jets. Shock Waves 3, 279–285 (1994)

    Article  Google Scholar 

  63. Gvozdeva, L.G., Bazhenova, T.V., Fokeev, V.P.: The regions of various forms of Mach reflection and its transition to regular reflection. Astronaut. Acta 3, 131–140 (1975)

    Google Scholar 

  64. Gvozdeva, L.G., Bazhenova, T.V., Lagutov, Y.P., Fokeev, V.P.: Shock wave interaction with cylindrical surfaces. Arch. Mech, Warszawa 32(5), 702–704 (1980)

    Google Scholar 

  65. Gvozdeva, L.G., Bazhenova, T.V., Prevoditeleva, O.A., Fokeev, V.P.: Mach reflection of shock waves. Astronaut. Acta 14, 503–508 (1969)

    Google Scholar 

  66. Gvozdeva, L.G., Bazhenova, T.V., Prevoditeleva, O.A., Fokeev, V.P.: Pressure and temperature at the wedge surface in Mach reflection of strong shock waves. Astronaut. Acta 15, 503–510 (1970)

    Google Scholar 

  67. Gvozdeva, L.G., Faresov, Y.M.: On the interaction of the shock wave with a wall covered by a porous compressible material. Lett. to Zh. Tekh. Fiz. 19, 1153–1156 (1984)

    Google Scholar 

  68. Gvozdeva, L.G., Lagutov, Y.P., Fokeev, V.P.: Transition from regular to Mach reflection in shock wave interaction with a cylindrical surface. Lett. to Zh. Tekh. Fiz. 5, 812–816 (1979). In Russian

    Google Scholar 

  69. Gvozdeva, L.G., Prevoditeleva, O.A., Fokeev, V.P.: Double Mach reflection of strong shock waves. Izv. Akad. Nauk. SSSR MZhG 1, 12–19 (1968). In Russian

    Google Scholar 

  70. Gvozdeva, L.G., Prevoditeleva, O.A.: Experimental investigation of Mach reflection of shock waves with velocities of 1000–3000 m/sec in carbon dioxide gas, nitrogen and air. Sov. Phys. Dokl. 8(10), 694–697 (1965)

    Google Scholar 

  71. Gvozdeva, L.G., Prevoditeleva, O.A.: Some features of Mach reflection of shock waves with velocities of 2000 m/sec in carbon dioxide and nitrogen. In: Research in Physical Gasdynamics, pp. 183–190. Nauka, Moscow (1966). In Russian

    Google Scholar 

  72. Gvozdeva, L.G., Prevoditeleva, O.A.: Investigation of triple configuration of detonation waves in gases. FGV 5(4), 451–461 (1969). In Russian

    Google Scholar 

  73. Gvozdeva, L.G.: Conditions of instability of three shock configuration in steady flows. ISIS 19, Moscow (2010)

  74. Gvozdeva, L.G.: Diffraction of detonation waves. Physical gasdynamics, heat transfer, and thermodynamics of high-temperature gases, pp. 131–139. DAN SSSR, Moscow (1962). In Russian

    Google Scholar 

  75. Gvozdeva, L.G.: Experimental investigation of detonation-wave diffraction in a stoichiometric mixture of methane with oxygen. ZhPMTF 5, 53–56 (1961). In Russian

    Google Scholar 

  76. Gvozdeva, L.G.: Refraction of detonation waves upon incidence on the interface of gaseous mixtures. Zh. Tekh. Fiz 31(6), 731–739 (1961). In Russian

    Google Scholar 

  77. Gvozdeva, L.G.: Reflection of detonation waves. In: Physical Gasdynamics and the Properties of Gases at High Temperatures. Nauka, Moscow (1964) (In Russian)

  78. Kotelnikov, A.L., Bazhenova, T.V., Bragin, M.D., Chiziikov, A.S., Golub, V.V., Scherbak, S.B.: Mach disk destruction by interference of rarefaction and compression waves. In: 24th International Symposium on Shock Waves, Beijing, China (2004)

  79. Lagutov, Y.P., Gvozdeva, L.G., Sharov, Y.L., Sherbak, N.B.: Experimental investigation of gas percolation through porous compressible material under the effect of shock wave. Physica A 241, 111–117 (1997)

    Article  Google Scholar 

  80. Lagutov, Y.P.: On the shape of shock wave diffracted at a rounded corner. Izd. Akad. Nauk. SSSR MZhG 3, 169–173 (1983). In Russian

    Google Scholar 

  81. Lagutov, Y.P.: Concerning the evaluation of pressure in unsteady reflection of shock waves. Izd. Akad. Nauk. SSSR MZhG 2, 100–106 (1977). In Russian

    Google Scholar 

  82. Lagutov, Y.P.: Interaction of shock waves of moderate intensity with cylinders. Izd. Akad. Nauk. SSSR MZhG 2, 113–119 (1979). In Russian

    Google Scholar 

  83. Lagutov, Y.P.: Mathematical simulation of Mach reflection of shock waves in media with different adiabatic indices. Izd. Akad. Nauk. SSSR MZhG 3, 90–94 (1976). In Russian

    Google Scholar 

  84. Lagutov, Y.P.: Unsteady loads in shock wave diffraction. Izd. Akad. Nauk SSSR MZhG 4, 123–129 (1975). In Russian

    Google Scholar 

  85. Naboko, I.M., Bazhenova, T.V., Opara, A.I., Belavin, V.A.: Formation of a jet of shock-heated gas outflowing into evacuated space. Astronaut. Acta. 17, 653–658 (1972)

    Google Scholar 

  86. Paillard, C., Dupre, G., Lisbet, R., Combourieu, J., Fokeev, V.P., Gvozdeva, L.G., Bazhenova, T.V.: Pressure and wall heat transfer behind a hydrogen azide detonation wave in narrow tubes. In: Gas Dynamics of Detonation and Explosions, New York, pp. 134–149 (1981)

  87. Paillard, C., Dupre, G., Lisbet, R., Combourieu, J., Fokeev, V.P., Gvozdeva, L.G.: A study of hydrogen azide detonation with heat transfer at the wall. Astronaut. Acta 6, 227–242 (1979)

    Article  Google Scholar 

  88. Salamandra, G.D., Bazhenova, T.V., Naboko, I.M.: Formation of detonation during the combustion of gas in tubes. ZhTF 29(11), 1345–1359 (1959). In Russian

    Google Scholar 

  89. Salamandra, G.D., Bazhenova, T.V., Naboko, I.M.: Formation of detonation wave during combustion of gas in tube. In: VII Symp. (Int.) on Combustion, London, pp. 851–855 (1959)

  90. Salamandra, G.D., Bazhenova, T.V., Zaitsev, S.G., et al.: Some methods of investigation of high-speed processes and their applications for detonation formation. Publish. of Academy of Sciences of USSR, Moscow (1959) (In Russian)

  91. Salamandra, G.D.: Photographic methods of investigation of rapid processes. Nauka, Moscow (1974) (In Russian)

  92. Shulmeister, A.M., Bazhenova, T.V., Golub, V.V., Grant, L., Fonov, V.S.: Shock waves generated by the large-scale vortical structures in impulsive supersonic jets. In: Lu, F. (ed.) 23rd International Symposium on Shock Waves. Fort Worth, TX, USA (2002)

  93. Shulmeister, A.M., Bazhenova, T.V., Golub, V.V., Mirova, O.A.: Investigation of shock waves and turbulent structures in impulsive supersonic axisymmetric jets. In: 10th International Symposium on Flow Visualization, Kyoto, Japan (2002)

  94. Shulmeister, A.M., Bazhenova, T.V., Golub, V.V., Nikitin, D.A.: The dynamics of supersonic vortex ring in hot and cold impulsive jets. In: 9th International Symposium on Flow Visualization, Edinburgh, UK (2000)

  95. Shulmeister, A.M., Bazhenova, T.V., Golub, V.V., Shcherbak, S.B.: The interaction of two types of sudden expansion flow with a flat plate. In: Hillier, R. (ed.) 22nd International Symposium on Shock Waves, London, pp. 1317–1321 (1999)

  96. Zaytsev, S.G., Soloukhin, R.I.: Ignition of adiabatically heated gas mixture. DAN USSR 122(6), 1039–1043 (1958). In Russian

    Google Scholar 

  97. Zaytsev, S.G., Soloukhin, R.I.: Ignition of adiabatically heated gas mixture. In: VII Symposium (Int.) on Combustion, London (1959)

  98. Zaytsev, S.G., Soloukhin, R.I.: On the question of the ignition of an adiabatically heated gas mixture. DAN SSSR 22(6), 1039–1045 (1958). In Russian

    Google Scholar 

  99. Zaytsev, S.G.: Determination and computation of some characteristics of the ignition process of a gas mixture. In: 3rd All-Union Meeting on the Theory of Combustion, Moscow, DAN SSSR 1, pp. 214–217. In Russian (1960)

  100. Zhilin, Y.V., Bazhenova, T.V., Gvozdeva, L.G.: Bifurcation of the shock wave upon reflecting from the end wall of the shock tube Archives of Mechanics. Warsawa. 30(4–5), 675–681 (1978)

    Google Scholar 

  101. Zhilin, Y.V.: An experimental investigation of gasdynamic processes in shock-induced starting of hypersonic nozzles. Zh. Prikl. Mekh. Teor. Fiz. 4, 66–74 (1977). In Russian

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Golub.

Additional information

Communicated by E.V. Timofeev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazhenova, T.V., Golub, V.V., Gvozdeva, L.G. et al. Half a century of continuous shock interaction investigations in the Joint Institute for High Temperatures of Russian Academy of Sciences. Shock Waves 24, 347–363 (2014). https://doi.org/10.1007/s00193-014-0498-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-014-0498-3

Keywords

Navigation