Skip to main content
Log in

Experimental study on a heavy-gas cylinder accelerated by cylindrical converging shock waves

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The Richtmyer–Meshkov instability behavior of a heavy-gas \((\text{ SF }_6)\) cylinder accelerated by a cylindrical converging shock wave is studied experimentally. A curved wall profile is well-designed based on the shock dynamics theory [Phys. Fluids, 22: 041701 (2010)] with an incident planar shock Mach number of 1.2 and a converging angle of \(15^\circ \) in a \(95\,\text{ mm }\times 95\) mm square cross-section shock tube. The \(\text{ SF }_6\) cylinder mixed with the glycol droplets flows vertically through the test section and is illuminated horizontally by a laser sheet. The images obtained only one per run by an ICCD (intensified charge coupled device) combined with a pulsed Nd:YAG laser are first presented and the complete evolution process of the \(\text{ SF }_6\) cylinder is then captured in a single test shot by a high-speed video camera combined with a high-power continuous laser. In this way, both the developments of the first counter-rotating vortex pair and the second counter-rotating vortex pair with an opposite rotating direction from the first one are observed. The experimental results indicate that the phenomena induced by the converging shock wave and the reflected shock formed from the center of convergence are distinct from those found in the planar shock case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Richtmyer, R.D.: Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math. 13, 297–319 (1960)

    Article  MathSciNet  Google Scholar 

  2. Meshkov, E.E.: Instability of the interface of two gases accelerated by a shock wave. Transl. Izv. Acad. Sci. USSR Fluid Dyn. 4, 151–157 (1969)

    MathSciNet  Google Scholar 

  3. Lindl, J.D., McCrory, R.L., Campball, E.M.: Progress toward ignition and burn propagation in inertial confinement fusion. Phys. Today 45(9), 32–50 (1992)

    Article  Google Scholar 

  4. Yang, J., Kubota, T., Zukoski, E.E.: Applications of shock-induced mixing to supersonic combustion. AIAA J. 35(31), 854–862 (1993)

    Article  Google Scholar 

  5. Arnett, W.D., Bahcall, J.N., Kirshner, R.P., Woosley, S.E.: Supernova 1987A. Annu. Rev. Astron. Astrophys. 27, 629–700 (1989)

    Article  Google Scholar 

  6. Perry, R.W., Kantrowitz, A.: The production and stability of converging shock waves. J. Appl. Phys. 22, 878–886 (1951)

    Article  Google Scholar 

  7. Takayama, K., Kleine, H., Gronig, H.: An experimental investigation of the stability of converging cylindrical shock waves in air. Exps. Fluids 5, 315–322 (1987)

    Article  Google Scholar 

  8. Watanabe, M., Onodera, O., Takayama, K.: Shock wave focusing in a vertical annular shock tube. In: Brun, R., Dumitrescu, L.Z. (eds.) Shock Waves at Marseille IV, pp. 99–104. Springer, Berlin (1995)

    Chapter  Google Scholar 

  9. Hosseini, S.H.R., Onodera, O., Takayama, K.: Characteristics of an annular vertical diaphragmless shock tube. Shock Waves 10, 151–158 (2000)

    Article  Google Scholar 

  10. Apazidis, N., Lesser, M.B.: On generation and convergence of polygonal-waves. J. Fluid Mech. 309, 301–319 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Apazidis, N., Lesser, M.B., Tillmark, N., Johansson, B.: An experimental study of converging polygonal shock waves. Shock Waves 12, 39–58 (2002)

    Article  MATH  Google Scholar 

  12. Glass, I.I.: Appraisal of UTIAS implosion-driven hypervelocity launchers and shock tubes. Prog. Aerospace Sci. 13, 223–291 (1972)

    Article  Google Scholar 

  13. Saito, T., Glass, I.I.: Temperature measurements at an implosion focus. Proc. R. Soc. Lond. A 384, 217–231 (1982)

    Article  Google Scholar 

  14. Dimotakis, P.E., Samtaney, R.: Planar shock cylindrical focusing by a perfect-gas lens. Phys. Fluids 18, 031705 (2005)

    Article  Google Scholar 

  15. Hosseini, S.H.R., Takayama, K.: Implosion of a spherical shock wave reflected from a spherical wall. J. Fluid Mech. 530, 223–239 (2005)

    Article  MATH  Google Scholar 

  16. Brouillette, M.: The Richtmyer–Meshkov instability. Annu. Rev. Fluid Mech. 34, 445–468 (2002)

    Article  MathSciNet  Google Scholar 

  17. Ranjan, D., Oakley, J., Bonazza, R.: Shock-bubble interactions. Annu. Rev. Fluid Mech. 43, 117–140 (2011)

    Article  MathSciNet  Google Scholar 

  18. Hosseini, S.H.R., Takayama, K.: Experimental study of Richtmyer–Meshkov instability induced by cylindrical shock waves. Phys. Fluids 17, 084101 (2005)

    Article  Google Scholar 

  19. Zhai, Z.G., Liu, C.L., Qin, F.H., Yang, J.M., Luo, X.S.: Generation of cylindrical converging shock waves based on shock dynamics theory. Phys. Fluids 22, 041701 (2010)

    Google Scholar 

  20. Zhai, Z.G., Si, T., Luo, X.S., Yang, J.M., Liu, C.L., Tan, D.W., Zou, L.Y.: Parametric study of cylindrical converging shock waves generated based on shock dynamics theory. Phys. Fluids 24, 026101 (2012)

    Article  Google Scholar 

  21. Haas, J.F., Sturtevant, B.: Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J. Fluid Mech. 181, 41–76 (1987)

    Article  Google Scholar 

  22. Zhai, Z.G., Si, T., Luo, X.S., Yang, J.M.: On the evolution of spherical gas interfaces accelerated by a planar shock wave. Phys. Fluids 23, 084104 (2011)

    Google Scholar 

  23. Si, T., Zhai, Z.G., Luo, X.S., Yang, J.M.: Experimental studies of reshocked spherical gas interfaces. Phys. Fluids 24, 054101 (2012)

    Article  Google Scholar 

  24. Mariani, C., Vandenboomgaerde, M., Jourdan, G., Souffland, D., Houas, L.: Investigation of the Richtmyer–Meshkov instability with stereolithographed interfaces. Phys. Rev. Lett. 100, 254503 (2008)

    Article  Google Scholar 

  25. Jacobs, J.W.: The dynamics of shock accelerated light and heavy gas cylinders. Phys. Fluids A 5, 2239–2247 (1993)

    Article  Google Scholar 

  26. Tomkins, C.D., Kumar, S., Orlicz, G.C., Prestridge, K.P.: An experimental investigation of mixing mechanisms in shock-accelerated flow. J. Fluid Mech. 611, 131–150 (2008)

    Article  MATH  Google Scholar 

  27. Orlicz, G.C., Balakumar, B.J., Tomkins, C.D., Prestridge, K.P.: A Mach number study of the Richtmyer–Meshkov instability in a varicose, heavy-gas curtain. Phys. Fluids 21, 064102 (2009)

    Article  Google Scholar 

  28. Layes, G., Jourdan, G., Houas, L.: Experimental study on a plane shock wave accelerating a gas bubble. Phys. Fluids 21, 074102 (2009)

    Article  Google Scholar 

  29. Haehn, N., Weber, C., Oakley, J., Anderson, M., Ranjan, D., Bonazza, R.: Experimental investigation of a twice-shocked spherical gas inhomogeneity with particle image velocimetry. Shock Waves 21, 225–231 (2011)

    Google Scholar 

  30. Prestridge, K.P., Rightley, P.M., Vorobieff, P., Benjamin, R.F., Kurnit, N.A.: Simultaneous density-field visualization and PIV of a shock-accelerated gas curtain. Exp. Fluids 29, 339 (2000)

    Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China Project Nos. 10972214 and 11272308 and the Fundamental Research Funds for the Central Universities No. WK2090050014. The authors would like to thank Meiru Fan, Minghu Wang and Xiansheng Wang for valuable help during the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Luo.

Additional information

Communicated by G. Jagadeesh and K. Kontis.

This paper was based on work that was presented at the 28th International Symposium on Shock Waves, Manchester, UK, July 17–22, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Si, T., Zhai, Z., Luo, X. et al. Experimental study on a heavy-gas cylinder accelerated by cylindrical converging shock waves. Shock Waves 24, 3–9 (2014). https://doi.org/10.1007/s00193-013-0450-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-013-0450-y

Keywords

Navigation