Skip to main content

Advertisement

Log in

Effects of steady flow heating by arc discharge upstream of non-slender bodies

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The influence of steady energy addition into the flow by a low-voltage DC-arc discharge located upstream of conically nosed and spherically blunted bodies was investigated experimentally in the Ludwieg-Tube Facility at Mach 5. The results include drag force measurements and shadowgraph flow visualizations. The flow-field structure, arising due to the bow-shock/heated-wake interaction, as well as the bow-shock intensity and heating power effects on the drag reduction is analyzed in this paper. The results demonstrate the existence of an optimum heating rate, providing a maximum effectiveness of energy addition and showing distinct drag reductions up to 70% dependent on test conditions and model geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c D :

drag force coefficient

c p :

specific heat capacity

D :

model diameter or drag force

L :

distance

M :

Mach number

P arc :

electric arc power

P heat :

heating power

P str :

stream-tube energy flux

P thr :

saved thrust power

q :

dynamic pressure

Re :

Reynolds number

S q :

cross-sectional area of the energy source

S ref :

cross-sectional area of the blunt body

T 0 :

total temperature

U :

velocity

δ :

thickness of the heated wake

\({\epsilon}\) :

heating power ratio (=P heat/P str)

η :

power effectiveness ratio (=P thr/P arc)

ρ :

density

θ :

cone half-angle

∞:

free-stream flow conditions

0:

conditions without energy deposition or total flow parameter

ref:

model reference parameter

s :

separation parameter

References

  1. Maurer, F., Brungs, W.: Beeinflussung des Widerstands und der Kopfwelle durch Wärmezufuhr im Staupunktsbereich stumpfer Körper bei Überschallanströmung, Jahrbuch 1968 der DGLR, Köln (in German), pp. 174–189 (1968)

  2. Maurer, F., Brungs, W.: Shockwave and drag variation of blunt bodies in supersonic flow by heat addition in the stagnation point region. Boeing Translation Nr. B-803

  3. Reding, J.P., Jecmen, D.M.: Effects of external burning on spike-induced separated flow. J. Spacecraft Rockets, 20(5), 452–453 (1983); also AIAA-82-1360 (1982)

    Article  Google Scholar 

  4. Baev, V.K., Golovichev, V.I., Tretyakov, P.K., et al.: Combustion in Supersonic Flow (in Russian). Nauka, Novosibirsk (1984)

  5. Zubkov A.I., Garanin A.F., Safronov V.F., Sukhanoskaya L.D., Tretyakov P.K.: Supersonic flow past an axisymmetric body with combustion in separation zones at the body nose and base (in Russian). Thermoph. Aeromech. 12(1), 1–12 (2005)

    Google Scholar 

  6. Georgievsky P.Yu., Levin V.A.: Supersonic flow over bodies in the presence of external energy input sources (in Russian). Pisma v Zhurn. Tekhn. Phiz. 14(8), 684–687 (1988)

    Google Scholar 

  7. Srinivasan, G.R., Chamberlain, R.R.: Drag Reduction of Spiked Missile by Heat Addition, AIAA-2004-4714 (2004)

  8. Artem’ev V.I., Bergel’son V.I., Kalmykov A.A., Nemchinov I.V., Orlova T.I., Rybakov V.A., Smirnov V.A., Khazins V.M.: Development of a Forerunner in interaction of a shock wave with a layer of reduced density. Fluid Dyn. 23(2), 290–295 (1988)

    Article  Google Scholar 

  9. Artem’ev V.I., Bergel’son V.I., Nemchinov I.V., Orlova T.I., Smirnov V.A., Khazins V.M.: Change of regime in supersonic flow past an obstacle preceded by a thin channel of reduced density. Fluid Dyn. 24(5), 779–784 (1989)

    Article  Google Scholar 

  10. Nemchinov I.V., Artem’ev V.I., Bergelson V.I., Khazins V.M., Orlova T.I., Rybakov V.A.: Rearrangement of the bow shock shape using a “hot spike”. Shock Waves 4, 35–40 (1994)

    Article  Google Scholar 

  11. Borzov V.Yu., Rybka I.V., Yuriev A.C.: Assessment of power inputs at drag reduction of body in supersonic flow (in Russian). Inzhenerno.-Fizicheski Zhurnal (Inzh.-Phyz. Journal) 63(6), 659–664 (1992)

    Google Scholar 

  12. Georgievsky, P.Yu., Levin, V.A.: Modification of regime of the flow over a sphere by means of local energy supply upstream. ICMAR 1996, International Conference on the Methods of Aerophys. Research, Novosibirsk (Russia), Part 3, pp 67–73 (1996)

  13. Levin, V.A., Afonina, N.A., Gromov, V.G.: Navier-Stokes Analysis of Supersonic Flow with Local Energy Deposition, AIAA-99-45540 (1999)

  14. Riggins D., Nelson H.F., Johnson E.: Blunt-body wave drag reduction using focused energy deposition. AIAA J. 37(4), 460–467 (1999)

    Article  Google Scholar 

  15. Georgievsky, P.Yu., Levin, V.A.: Supersonic Flow Control by Distributed Energy Addition for Effective Change of Aerodynamic Characteristics of Different Bodies. ICMAR 2002, International Conference on the Methods of Aerophys. Research, Novosibirsk (Russia), Part 3, pp. 67–72 (2002)

  16. Chernyi, G.G.: Some Recent Results in Aerodynamic Applications of Flows with Localized Energy Addition, AIAA-99-4819 (1999)

  17. Bityurin, V., Klimov, A., Leonov, S., Bocharov, A., Linnebery, J.: Assessment of a Concept of Advanced Flow/Flight Control for Hypersonic Flights in Atmosphere, AIAA-99-4820 (1999)

  18. Zheltovodov, A.A.: Development of the Studies on Energy Deposition for Application to the Problems of Supersonic Aerodynamics, Preprint No. 10-2002, Institute of Theoretical and Applied Mechanics, Russian Academy of Sciences, Siberian Branch. Novosibirsk (2002)

  19. Knight, D., Kuchinskiy, V., Kuranov, A., Sheikin, E.: Survey of Aerodynamic Flow Control at High Speed by Energy Deposition, AIAA-2003-0525 (2003)

  20. Fomin V.M., Tretyakov P.K., Taran J.-P.: Flow control using various plasma and aerodynamic approaches (short review). Aerospace Sci. Technol. 8, 411–421 (2004)

    Article  Google Scholar 

  21. Kolesnichenko, Yu., Azarova, O., Brovkin, V., Khmara, D., Lashkov, V., Mashek, I., Ryvkin, M.: Basics in Beamed MW Energy Deposition for Flow/Flight Control, AIAA-2004-669 (2004)

  22. Bletzinger P., Ganguly B.N., Van Wie D., Garscadden A.: Plasmas in high speed aerodynamics. J. Phys. D Appl. Phys. Inst. Phys. Publ. 38, R33–R57 (2005)

    Article  Google Scholar 

  23. Knight, D., Kolesnichenko, Yu.: A survey of aerodynamic flow control at high speed by microwave energy deposition. In: Bityurin, V.A. (ed.) Proceedings of 7th International Workshop on Magnetoplasma Aerodynamics. Moscow, Institute of High Temperatures, pp. 151–155 (2007)

  24. Knight D.: Survey of aerodynamic drag reduction at high speed by energy deposition. J. Propulsion Power 24(6), 1153–1167 (2008)

    Article  Google Scholar 

  25. Leonov S.B., Yarantsev D.A.: Near-surface electrical discharge in supersonic air flow: properties and flow control. J. Propulsion Power 24(6), 1168–1181 (2008)

    Article  Google Scholar 

  26. Vitkovsky V.V., Grachev L.P., Gritsov N.P., Kuznetsov Yu.E., Lebedenko V.V., Skvortsov V.V., Khodataev K.V., Yankov V.P.: Research of unsteady flow over the bodies by supersonic air flow heated by longitudinal electric discharge (in Russian). Teplofizika Visokih Temperatur (Theromphys. High Temp.) 28(6), 1156–1163 (1990)

    Google Scholar 

  27. Gridin, A., Zabrodin, A., Klimov, A., Kuznetsov, Yu., Lutsky, A., Skvortsov, V., Hodataev, K.: Numerical and Experimental Research of Supersonic Flow Over Blunt-Nose Body in Presence of an Electric Discharge, Preprint No 19, Keldysh Institute RAS, Moscow (1995) (in Russian)

  28. Leonov, S., Cain, T., Klimov, A., Pashina, A., Skvortsov, V., Timofeev, B.: Influence of a HF Corona Plasma Structure on Drag of an Axial-Symmetric Body in a Supersonic Airflow, AIAA-99-4856 (1999)

  29. Bracken, R.M., Myrabo, L.N., Nagamatsu, H.T., Meloney, E.D., Shneider, M.N.: Experimental Investigation of an Electric Arc Air-Spike in Mach 10 Flow with Preliminary Drag Measurements, AIAA-2001-2734 (2001)

  30. Hartley, C.S., Portwood, T.W., Filippelli, M.V., Myrabo, L.N., Nagamatsu, H.T., Shneider, M.N.: Experimental/Computational Investigation of Drag Reduction by Electric-Arc Airspikes at Mach 10, AIAA-2004-0035 (2004)

  31. Misievicz, C., Myrabo, L.N., Shneider, M.N., Raizer, Y.P.: Combined Experimental/Numerical Investigation of Electric-Arc Airspikes for Blunt Body at Mach 3, AIAA-2004-2563 (2004)

  32. Leonov, S.B.: Plasma-Assisted Aerodynamics: Approach and Problem of Measurements, FLUCOME 2007: CD-Proc., Tallahassee (FL), USA, Florida State University Publisher, pp. 1–17 (2007)

  33. Satheesh K., Jagadeesh G.: Experimental investigations of the effect of energy deposition in hypersonic blunt body flow field. Shock Waves 18, 53–70 (2008)

    Article  Google Scholar 

  34. Gnemmi P., Charon R., Duperoux J.-P., George A.: Feasibility study for steering a supersonic projectile by a plasma actuator. AIAA J. 46(6), 1308–1317 (2008)

    Article  Google Scholar 

  35. Schülein, E., Zheltovodov, A.A., Pimonov, E.A., Loginov, M.S.: Experimental and Numerical Investigation of Electric-Arc Airspikes for Blunt and Sharp Bodies at Mach 5, ICMAR 2008, International Conference on the Methods of Aerophys. Research: CD-Proc., Novosibirsk (Russia), pp. 1–11 (2008)

  36. Schülein, E., Zheltovodov, A.A.: Effects of Localized Flow Heating by DC-Arc Discharge Ahead of Non-Slender Bodies, AIAA-2009-7346 (2009)

  37. Skvortsov, V.V.: Investigation of Electric-Discharge Applications for Wave Drag Reduction/Issledovanie voprosov primenenia elektricheskih razriadov dlia snizhenia volnovogo soprotivlenia (in Russian), Uchenye Zapiski TSAGI, XL(6), pp. 60–70 (2009)

  38. Adelgren R., Yan H., Knight D., Beutner T., Zheltovodov A.: Control on Edney IV interaction by pulsed laser energy deposition. AIAA J. 43(2), 256–269 (2005)

    Article  Google Scholar 

  39. Zheltovodov, A.A., Pimonov, E.A., Knight, D.D.: Energy Deposition Influence on Supersonic Flow Over Axisymmetric Bodies, AIAA-2007-1230 (2007)

  40. Schülein E., Zheltovodov A.A., Pimonov E.A., Loginov M.S.: Experimental and numerical modeling of the bow shock interaction with pulse-heated air bubbles. Int. J. Aerospace Innovations 2(3), 165–187 (2010)

    Article  Google Scholar 

  41. Lashkov, V., Mashek, I., Anisimov, Yu., Ivanov, V., Kolesnichenko, Yu., Azarova, O.: Method of Vortex Flow Intensification under MW Filament Interaction with Shock Layer on Supersonic Body. AIAA-2006-0404 (2006)

  42. Lashkov, V., Mashek, I., Anisimov, Yu., Ivanov, V., Kolesnichenko, Yu., Azarova, O.: Gas-Dynamic Effects Around the Body Under Energy Deposition in Supersonic Flow, AIAA-2007-1231 (2007)

  43. Knight, D., Kolesnichenko, Yu.F., Brovkin, V., Khmara, D., Lashkov, V., Mashek, I.: Interaction of Microwave-Generated Plasma With a Blunt Body at Mach 2.1, AIAA-2009-0846 (2009)

  44. Azarova, O., Knight, D., Kolesnichenko, Yu.: Instabilities, Vortices and Structures Charactersistics During Interaction of Microvave Filaments with Body in Supersonic Flow, AIAA-2010-1004 (2010)

  45. Guvernyuk S.V., Samoilov A.V.: About Control of Supersonic flow over the bodies using pulsative heat source (in Russian). Pisma v ZhTF (Tech. Phys. Lett.) 23(9), 1–8 (1997)

    Google Scholar 

  46. Guvernjuk S., Savinov K.: Isobaric separation structures in supersonic flows with a localized inhomogeniety (in Russian). Doklady Phys. 13(3), 151–155 (2007)

    Article  Google Scholar 

  47. Georgievsky, P.Yu., Levin, V.A.: Transformations of Front Separation Regions Controlled by Upstream Energy Deposition, AIAA-2007-1232 (2007)

  48. Georgievsky, P.Yu., Levin, V.A., Suturin, O.G.: Front Separation Regions Initiated by Upstream Energy Deposition, AIAA-2008-1355 (2008)

  49. Borzov V.Yu., Mikhailov V.M., Rybka I.V., Savishenko N.P., Yuriev A.S.: Experimental research of supersonic flow over the obstacle at the energy supply into the undisturbed flow (in Russian). Inzh.-Phyz. Zhurn. 63(5), 515–520 (1994)

    Google Scholar 

  50. Tretyakov P.K., Garanin A.F., Grachev G.P., Krainev V.L., Ponomarenko A.G., Tishenko V.N., Yakovlev V.I.: The supersonic flow control over the bodies with the use of power optical pulsating discharge (in Russian). Dokladi Akademii Nauk (DAN) 351(3), 339–340 (1994)

    Google Scholar 

  51. Kuo S.P.: Plasma mitigation of shock wave: experiments and theory. Shock Waves 17, 225–239 (2007)

    Article  Google Scholar 

  52. Bityurin, V.A., Klimov, A.I.: Non-Thermal Plasma Aerodynamics Effects, AIAA-2005-978 (2005)

  53. Bityurin, V.A., Bocharov, A.N., Klimov, A.I., Leonov, S.B.: Analysis of Non-Thermal Plasma Aerodynamics Effects, AIAA-2006-1209 (2006)

  54. Menier E., Leger L., Depussay E., Lago V., Artana G.: Effect of a DC discharge on the supersonic rarefied air flow over a flat plate. J. Phys. D Appl. Phys. 40, 695–701 (2007)

    Article  Google Scholar 

  55. Ludwieg, H., Hottner, Th., Grauer-Carstensen, H.: Der Rohrwindkanal der Aerodynamischen Versuchanstalt Göttingen, Jahrbuch 1969 der DGLR (in German), pp. 52–58 (1970)

  56. Zheltovodov, A.A.: Shock Waves/Turbulent Boundary-Layer Interactions—Fundamental Studies and Applications, AIAA-96-1977 (1996)

  57. Loginov M.S., Adams N.A., Zheltovodov A.A.: Large-Eddy simulation of shock-wave/turbulent-boundary-layer interaction. J. Fluid Mech. 565, 135–169 (2006)

    Article  MATH  Google Scholar 

  58. Zheltovodov, A.A.: Some Advances in Research of Shock Wave Turbulent Boundary Layer Interactions, AIAA-2006-0496 (2006)

  59. Zheltovodov A.A., Pimonov E.A.: Investigation of localized energy deposition effect on streamwise vortex interaction with an oblique shock. Thermoph. Aeromech. 12(4), 517–537 (2005)

    Google Scholar 

  60. Zheltovodov A.A., Pimonov E.A., Knight D.: Numerical modeling of vortex/shock wave interaction and its transformation by localized energy deposition. Shock Waves 17, 273–290 (2007)

    Article  MATH  Google Scholar 

  61. Azarova O.A.: Simulation of stochastic pulsating flows with instabilities using minimum-stencil difference schemes. Comput. Math. Math. Phys. 49(8), 1397–1414 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  62. Dolling D.S.: Fifty Years of shock-wave/boundary-layer interaction research: what next?. AIAA J. 39(8), 1517–1531 (2001)

    Article  Google Scholar 

  63. Beresh S.J., Clemens N.T., Dolling D.S.: Relationship between upstream turbulent boundary-layer velocity fluctuations and separation shock unsteadiness. AIAA J. 40(12), 2412–2422 (2002)

    Article  Google Scholar 

  64. Ganapathisubramani B., Clemens N.T., Dolling D.S.: Effects of upstream boundary layer on the unsteadiness of shock-induced separation. J. Fluid Mech. 585, 369–394 (2007)

    Article  MATH  Google Scholar 

  65. Antonov A.N., Gretsov V.K., Shalaev S.P.: Nonsteady supersonic flow over spiked bodies. Mekhanika Zhidkosti i Gaza 5, 118–124 (1976)

    Google Scholar 

  66. Kenworthy, M.: A Study of Unstable Axisymmetric Separation in High Speed Flows, Ph.D. Dissertation, Dept. of Aerospace and Ocean Engineering, Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (1978)

  67. Feszty D., Badcock K.J., Richards D.E.: Driving mechanisms of high-speed unsteady spiked body flows, part 1: pulsation mode. AIAA J. 42(1), 95–106 (2004)

    Article  Google Scholar 

  68. Zapriagaev V.I., Kavun I.N.: Experimental study of reversed flow in the front separated zone at the pulsating regime of flow of the body with spike (in Russian). Prikladnaya Mekhanika i Techn. Fizika 48(4), 30–39 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Schülein.

Additional information

Communicated by K. Hannemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schülein, E., Zheltovodov, A. Effects of steady flow heating by arc discharge upstream of non-slender bodies. Shock Waves 21, 383–396 (2011). https://doi.org/10.1007/s00193-011-0307-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-011-0307-1

Keywords

Navigation