Skip to main content
Log in

The influence of single-pulse and tandem shock waves on bacteria

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Tandem shock waves have shown to enhance kidney stone fragmentation during in vitro and in vivo extracorporeal shock wave lithotripsy (SWL). The purpose of this research was to study the influence of shock waves on the viability of two strains of bacteria in solution, and to verify if tandem shock waves increase microorganism death. A piezoelectric shock wave generator was modified to generate either standard (single-pulse) or tandem (dual-pulse) shock waves. E. coli and Listeria monocytogenes were exposed in vitro to thousands of standard shock waves. Another group was subjected to the same number of tandem shock waves with a delay of 450 μs. A third group was exposed to tandem shock waves having a 900-μs delay. No inactivation was observed for both microorganisms at up to 8,000 standard shock waves. About 40% of L. monocytogenes and 50% of E. coli were inactivated after treatment with tandem waves at a delay of 900 μs. Inactivation was less efficient for a delay of 400 μs. Our results could be useful in medicine, because infection stones are still a significant cause of morbidity and mortality after SWL. The use of tandem shock waves to treat persistent localized infections or as a novel non-thermal food-preservation method also might be possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Loske, A.M.: Applications of shock waves in medicine. In: Ben-Dor, G., Elperin, T., Igra, O., Lifschitz, A.(eds) Handbook of Shock Waves, chap. 12, Academic Press, San Diego (2001)

    Google Scholar 

  2. Lingeman, J.E.: Lithotripsy systems. In: Smith, A.D., Badlani, G.H., Bagley, D.H., Clayman, R.V., Docimo, S.G., Jordan, G.H., Kavoussi, L.R., Lee, B.R., Lingeman, J.E., Preminger, G.M., Segura, J.W.(eds) Smith’s Textbook on Endourology, pp. 333–342. BC Decker, Hamilton (2007)

    Google Scholar 

  3. Loske, A.M.: Shock Wave Physics for Urologists. Centro de Física Aplicada y Tecnología Avanzada, UNAM, Querétaro, México. ISBN 978-970-32-4377-8 (2007)

  4. Michaels, E., Fowler, J.E., Mariano, M.: Bacteriuria following extracorporeal shock wave lithotripsy of infection stones. J. Urol. 140, 524–526 (1988)

    Google Scholar 

  5. Pode, D., Lenkovsky, Z., Shapiro, A., Pfau, A.: Can extracorporeal shock wave lithotripsy eradicate persistent urinary infections associated with infected stones?. J. Urol. 140, 257–259 (1988)

    Google Scholar 

  6. Ohshima, T., Tanaka, S., Teshima, K.: Effects of shock waves on microorganisms: an evaluation method of the effects. In: Takayama, K.(eds) Shock Waves, pp. 1215–1219. Springer, New York (1991)

    Google Scholar 

  7. Kerfoot, W.W., Beshai, A.Z., Carson, C.C.: The effect of isolated high-energy shock wave treatments on subsequent bacterial growth. Urol. Res. 20, 183–186 (1992)

    Article  Google Scholar 

  8. Loske, A.M., Prieto, F.E., Zavala, M.L., Santana, A.D., Armenta, E.: Repeated application of shock waves as a possible method for food preservation. Shock Waves 9, 49–55 (1999)

    Article  Google Scholar 

  9. Loske, A.M., Alvarez, U.M., Hernández-Galicia, C., Castaño-Tostado, E., Prieto, F.E.: Bactericidal effect of underwater shock waves on Escherichia coli ATCC 10536 suspensions. Innov. Food Sci. Emerg. Technol. 3, 321–327 (2002)

    Article  Google Scholar 

  10. Álvarez, U.M., Loske, A.M., Castaño-Tostado, E., Prieto, F.E.: Inactivation of Escherichia coli O157:H7, Salmonella typhimurium and Listeria monocytogenes by underwater shock waves. Innov. Food Sci. Emerg. Technol. 5, 459–463 (2004)

    Article  Google Scholar 

  11. Folberth, W., Köhler, G., Rohwedder, A., Matura, E.: Pressure distribution and energy flow in the focal region of two different electromagnetic shock wave sources. J. Lithotr. Stone Dis. 4, 1–7 (1992)

    Google Scholar 

  12. Cleveland, R.O., McAteer, J.A.: The physics of shock wave lithotripsy. In: Smith, A.D., Badlani, G.H., Bagley, D.H., Clayman, R.V., Docimo, S.G., Jordan, G.H., Kavoussi, L.R., Lee, B.R., Lingeman, J.E., Preminger, G.M., Segura, J.W.(eds) Smith’s Textbook on Endourology, pp. 317–332. BC Decker, Hamilton (2007)

    Google Scholar 

  13. Crum, L.A.: Cavitation microjets as a contributory mechanism for renal calculi disintegration in ESWL. J. Urol. 140, 1587–1590 (1988)

    Google Scholar 

  14. Lokhandwalla, M., Sturtevant, B.: Fracture mechanics model of stone comminution in ESWL and implications for tissue damage. Phys. Med. Biol. 45, 1923–1949 (2000)

    Article  Google Scholar 

  15. Evan, A.P., Willis, L.R., Connors, B.A., McAteer, J.A., Lingeman, J.E.: Renal injury by extracorporeal shock wave lithotripsy. J. Endourol. 5, 25–35 (1991)

    Article  Google Scholar 

  16. Coleman, A.J., Choi, M.J., Saunders, J.E.: Detection of acoustic emission from cavitation in tissue during clinical extracorporeal lithotripsy. Ultrasound Med. Biol. 22, 1079–1087 (1996)

    Article  Google Scholar 

  17. Delacrétaz, G., Rink, K., Pittomvils, G., Lafaut, J.P., Vandeursen, H., Boving, R.: Importance of the implosion of ESWL-induced cavitation bubbles. Ultrasound Med. Biol. 21, 97–103 (1995)

    Article  Google Scholar 

  18. Morgan, T.R., Laudone, U.P., Heston, W.P.W., Zeitz, L., Fair, W.R.: Free radical production by high energy shock waves—comparison with ionizing radiation. J. Urol. 139, 186–189 (1988)

    Google Scholar 

  19. Choi, M.J., Coleman, A.J., Saunders, J.E.: The influence of fluid properties and pulse amplitude on bubble dynamics in the field of a shock wave lithotripter. J. Phys. Med. Biol. 38, 1561–1573 (1993)

    Article  Google Scholar 

  20. Bailey, M.R.: Control of acoustic cavitation with application to lithotripsy. Technical Report ARL-TR-97-1. Ph.D. dissertation. Applied Research Laboratories, University of Texas at Austin, Austin, Texas (1997)

  21. Xi, X., Zhong, P.: Improvement of stone fragmentation during shock-wave lithotripsy using a combined EH/PEAA shock-wave generator—in vitro experiments. Ultrasound Med. Biol. 26, 457–467 (2000)

    Article  Google Scholar 

  22. Sokolov, D.L., Bailey, M.R., Crum, L.A.: Use of two pulses to localize and intensify cavitation in lithotripsy. J. Acoust. Soc. Am. 110, 1685–1695 (2001)

    Article  Google Scholar 

  23. Loske, A.M., Prieto, F.E., Fernández, F., van Cauwelaert, J.: Tandem shock wave cavitation enhancement for extracorporeal lithotripsy. J. Phys. Med. Biol. 47, 3945–3957 (2002)

    Article  Google Scholar 

  24. Loske, A.M., Fernández, F., Zendejas, H., Paredes, M., Castaño-Tostado, E.: Dual pulse shock wave lithotripsy: in vitro and in vivo study. J. Urol. 174, 2388–2392 (2005)

    Article  Google Scholar 

  25. Evan, A.P., Willis, L.R., McAteer, J.A., Bailey, M.R., Connors, B.A., Shao, Y., Lingeman, J.E., Williams, J.C. Jr., Fineberg, N.S., Crum, L.A.: Kidney damage and renal functional changes are minimized by waveform control that suppresses cavitation in SWL. J. Urol. 168, 1556–1562 (2002)

    Article  Google Scholar 

  26. Eisenmenger, W.: The mechanism of stone fragmentation in ESWL. Ultrasound Med. Biol. 27, 683–693 (2001)

    Article  Google Scholar 

  27. Eisenmenger, W., Du, X., Tang, C., Zhao, S., Wang, Y., Rong, F., Dai, D., Guan, M., Qi, A.: The first clinical results of wide-focus and low-pressure ESWL. Ultrasound Med. Biol. 28, 769–774 (2002)

    Article  Google Scholar 

  28. International Electrotechnical Commission: Pressure pulse lithotripters—characteristics of fields. IEC 61846 (1998)

  29. Tsukamoto, I., Constaninoiu, E., Furuta, M., Nishimura, R., Maeda, Y.: Inactivation effect of sonication and chlorination on Saccharomyces cerevisiae. Calorimetric analysis. Ultrason. Sonochem. 11, 167–172 (2004)

    Article  Google Scholar 

  30. von Eiff, C., Overbeck, J., Haupts, G., Herrmann, M., Winckler, S., Richter, K.D., Peters, G., Spiegel, H.U.: Bactericidal effect of extracorporeal shock waves on Staphylococcus aureus. J. Med. Microbiol. 49, 709–712 (2000)

    Google Scholar 

  31. Abe, A., Mimur, H., Ishida, H., Yoshida, K.: The effect of shock pressures on the inactivation of a marine Vibrio sp. Shock Waves 17, 143–151 (2007)

    Article  Google Scholar 

  32. Furuta, M., Yamaguchi, M., Tsukamoto, T., Yim, B., Stavarache, C.E., Hasiba, K., Maeda, Y.: Inactivation of Escherichia coli by ultrasonic irradiation. Ultrason. Sonochem. 11, 61–65 (2004)

    Article  Google Scholar 

  33. Tsukamoto, I., Yim, B., Stavarache, C.E., Furuta, M., Hashiba, K., Maeda, Y.: Inactivation of Saccharomyces cerevisiae by ultrasonic irradiation. Ultrason. Sonochem. 11, 57–60 (2004)

    Article  Google Scholar 

  34. Gerdesmeyer, L., von Eiff, Ch., Horn, C., Henne, M., Roessner, M., Diehl, P., Gollwitzer, H.: Antibacterial effects of extracorporeal shock waves. Ultrasound Med. Biol. 31, 115–119 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim M. Loske.

Additional information

Communicated by E. Timofeev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Álvarez, U.M., Ramírez, A., Fernández, F. et al. The influence of single-pulse and tandem shock waves on bacteria. Shock Waves 17, 441–447 (2008). https://doi.org/10.1007/s00193-008-0125-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-008-0125-2

Keywords

PACS

Navigation