Skip to main content
Log in

Surgeon Upper Extremity Kinematics During Error and Error-Free Retropubic Trocar Passage

  • Original Article
  • Published:
International Urogynecology Journal Aims and scope Submit manuscript

Abstract

Introduction and hypothesis

Surgeon kinematics play a significant role in the prevention of patient injury. We hypothesized that elbow extension and ulnar wrist deviation are associated with bladder injury during simulated midurethral sling (MUS) procedures.

Methods

We used motion capture technology to measure surgeons’ flexion/extension, abduction/adduction, and internal/external rotation angular time series for shoulder, elbow, and wrist joints. Starting and ending angles, minimum and maximum angles, and range of motion (ROM) were extracted from each time series. We created anatomical multibody models and applied linear mixed modeling to compare kinematics between trials with versus without bladder penetration and attending versus resident surgeons. A total of 32 trials would provide 90% power to detect a difference.

Results

Out of 85 passes, 62 were posterior to the suprapubic bone and 20 penetrated the bladder. Trials with versus without bladder penetration were associated with more initial wrist dorsiflexion (−27.32 vs −9.03°, p = 0.01), less final elbow flexion (39.49 vs 60.81, p = 0.03), and greater ROM in both the wrist (27.48 vs 14.01, p = 0.02), and elbow (20.45 vs 12.87, p = 0.04). Wrist deviation and arm pronation were not associated with bladder penetration. Compared with attendings, residents had more ROM in elbow flexion (14.61 vs 8.35°, p < 0.01), but less ROM in wrist dorsiflexion (13.31 vs 20.33, p = 0.02) and arm pronation (4.75 vs 38.46, p < 0.01).

Conclusions

Bladder penetration during MUS is associated with wrist dorsiflexion and elbow flexion but not internal wrist deviation and arm supination. Attending surgeons exerted control with the wrist and forearm, surgical trainees with the elbow. Our findings have direct implications for MUS teaching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data is available upon reasonable request by contacting the primary author.

References

  1. James MB, Theofanides MC, Sui W, Onyeji I, Badalato GM, Chung DE. Sling procedures for the treatment of stress urinary incontinence: comparison of national practice patterns between urologists and gynecologists. J Urol. 2017. https://doi.org/10.1016/j.juro.2017.06.093.

    Article  PubMed  Google Scholar 

  2. Ford AA, Rogerson L, Cody JD, Aluko P, Ogah JA. Mid-urethral sling operations for stress urinary incontinence in women. Cochrane Database Syst Rev. 2017;7:Cd006375. https://doi.org/10.1002/14651858.CD006375.pub4.

    Article  PubMed  Google Scholar 

  3. Blaivas JG, Purohit RS, Benedon MS, et al. Safety considerations for synthetic sling surgery. Nat Rev Urol. 2015;12(9):481–509. https://doi.org/10.1038/nrurol.2015.183.

    Article  PubMed  Google Scholar 

  4. LaSala CA, Schimpf MO, Udoh E, O’Sullivan DM, Tulikangas P. Outcome of tension-free vaginal tape procedure when complicated by intraoperative cystotomy. Am J Obstet Gynecol. 2006;195(6):1857–61. https://doi.org/10.1016/j.ajog.2006.06.060.

    Article  PubMed  Google Scholar 

  5. Skoczylas LC, Littleton EB, Kanter SL, Sutkin G. Teaching techniques in the operating room: the importance of perceptual motor teaching. Acad Med. 2012;87(3):364–71. https://doi.org/10.1097/ACM.0b013e31824484a0.

    Article  PubMed  Google Scholar 

  6. Ackenbom MF, Littleton EB, Mahmud F, Sutkin G. The complexity of the retropubic midurethral sling: a cognitive task analysis. Female Pelvic Med Reconstr Surg. 2021;27(2):90–3. https://doi.org/10.1097/spv.0000000000000736.

    Article  PubMed  Google Scholar 

  7. Walters MD, Karram MM. Sling procedures for stress urinary incontinence. In: Walters MD, Karram MM, eds. Urogynecology and reconstructive pelvic surgery. 3rd ed. St. Louis: Mosby Elsevier; 2007. p. 198.

    Google Scholar 

  8. Arif M, Stylianou A, Bachar A, King G, Sutkin G. Retropubic trocar modified with a load cell to verify contact with pubic bone. Surgery. 2022;172(3):1024–8. https://doi.org/10.1016/j.surg.2022.06.011.

    Article  PubMed  Google Scholar 

  9. Mueller F, Arif MA, Bachar A, King GW, Stylianou AP, Sutkin G. Surgeon estimation of retropubic trocar position in blind 3D space. Int Urogynecol J. 2023;34(10):2439–45. https://doi.org/10.1007/s00192-023-05541-1.

    Article  PubMed  Google Scholar 

  10. Aurand AM, Dufour JS, Marras WS. Accuracy map of an optical motion capture system with 42 or 21 cameras in a large measurement volume. J Biomech. 2017;58:237–40. https://doi.org/10.1016/j.jbiomech.2017.05.006.

    Article  PubMed  Google Scholar 

  11. Nagymate G, Kiss R. Application of OptiTrack motion capture systems in human movement analysis: a systematic literature review. Recent Innov Mechatron. 2018;5(1):1–9. https://doi.org/10.17667/riim.2018.1/13.

    Article  Google Scholar 

  12. Delp SL, Anderson FC, Arnold AS, et al. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 2007;54(11):1940–50. https://doi.org/10.1109/tbme.2007.901024.

    Article  PubMed  Google Scholar 

  13. Seth A, Hicks JL, Uchida TK, et al. OpenSim: simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement. PLoS Comput Biol. 2018;14(7):e1006223. https://doi.org/10.1371/journal.pcbi.1006223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rajagopal A, Dembia CL, DeMers MS, Delp DD, Hicks JL, Delp SL. Full-body musculoskeletal model for muscle-driven simulation of human gait. IEEE Trans Biomed Eng. 2016;63(10):2068–79. https://doi.org/10.1109/tbme.2016.2586891.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mantoan A, Pizzolato C, Sartori M, Sawacha Z, Cobelli C, Reggiani M. MOtoNMS: a MATLAB toolbox to process motion data for neuromusculoskeletal modeling and simulation. Source Code Biol Med. 2015;10(1):12. https://doi.org/10.1186/s13029-015-0044-4.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Verrel J, Pologe S, Manselle W, Lindenberger U, Woollacott M. Exploiting biomechanical degrees of freedom for fast and accurate changes in movement direction: coordination underlying quick bow reversals during continuous cello bowing. Front Hum Neurosci. 2013;7:157. https://doi.org/10.3389/fnhum.2013.00157.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Aune TK, Aune MA, Ingvaldsen RP, Vereijken B. Transfer of motor learning is more pronounced in proximal compared to distal effectors in upper extremities. Front Psychol. 2017;8:1530. https://doi.org/10.3389/fpsyg.2017.01530.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Serrien B, Baeyens JP. The proximal-to-distal sequence in upper-limb motions on multiple levels and time scales. Hum Mov Sci. 2017;55:156–71. https://doi.org/10.1016/j.humov.2017.08.009.

    Article  PubMed  Google Scholar 

  19. Haar S, van Assel CM, Faisal AA. Motor learning in real-world pool billiards. Sci Rep. 2020;10(1):20046. https://doi.org/10.1038/s41598-020-76805-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Farcas MA, Trudeau MO, Nasr A, Gerstle JT, Carrillo B, Azzie G. Analysis of motion in laparoscopy: the deconstruction of an intra-corporeal suturing task. Surg Endosc. 2017;31(8):3130–9. https://doi.org/10.1007/s00464-016-5337-4.

    Article  PubMed  Google Scholar 

  21. Uemura M, Jannin P, Yamashita M, et al. Procedural surgical skill assessment in laparoscopic training environments. Int J Comput Assist Radiol Surg. 2016;11(4):543–52. https://doi.org/10.1007/s11548-015-1274-2.

    Article  PubMed  Google Scholar 

  22. Hwang H, Lim J, Kinnaird C, et al. Correlating motor performance with surgical error in laparoscopic cholecystectomy. Surg Endosc. 2006;20(4):651–5. https://doi.org/10.1007/s00464-005-0370-8.

    Article  CAS  PubMed  Google Scholar 

  23. Ebina K, Abe T, Higuchi M, et al. Motion analysis for better understanding of psychomotor skills in laparoscopy: objective assessment-based simulation training using animal organs. Surg Endosc. 2021;35(8):4399–416. https://doi.org/10.1007/s00464-020-07940-7.

    Article  PubMed  Google Scholar 

  24. Ebina K, Abe T, Hotta K, et al. Automatic assessment of laparoscopic surgical skill competence based on motion metrics. PLoS One. 2022;17(11):e0277105. https://doi.org/10.1371/journal.pone.0277105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Trudeau MO, Carrillo B, Nasr A, Gerstle JT, Azzie G. Educational role for an advanced suturing task in the pediatric laparoscopic surgery simulator. J Laparoendosc Adv Surg Tech A. 2017;27(4):441–6. https://doi.org/10.1089/lap.2016.0516.

    Article  PubMed  Google Scholar 

  26. Overby DW, Watson RA. Hand motion patterns of fundamentals of laparoscopic surgery certified and noncertified surgeons. Am J Surg. 2014;207(2):226–30. https://doi.org/10.1016/j.amjsurg.2013.10.007.

    Article  PubMed  Google Scholar 

  27. Klag EA, Heil HO, Wesemann LD, Charters MA, North WT. Higher annual total hip arthroplasty volume decreases the risk of intraoperative periprosthetic femur fractures. J Arthroplasty. 2023. https://doi.org/10.1016/j.arth.2023.07.014.

    Article  PubMed  Google Scholar 

  28. Geiger JT, Fleming F, Iannuzzi JC, Stoner M, Doyle A. Guideline compliant minimum asymptomatic carotid endarterectomy surgeon and hospital volume cutoffs. Ann Vasc Surg. 2023;97:129–38. https://doi.org/10.1016/j.avsg.2023.07.089.

    Article  PubMed  Google Scholar 

  29. Sung VW, Rogers ML, Myers DL, Clark MA. Impact of hospital and surgeon volumes on outcomes following pelvic reconstructive surgery in the United States. Am J Obstet Gynecol. 2006;195(6):1778–83. https://doi.org/10.1016/j.ajog.2006.07.015.

    Article  PubMed  Google Scholar 

  30. Mehta A, Xu T, Hutfless S, et al. Patient, surgeon, and hospital disparities associated with benign hysterectomy approach and perioperative complications. Am J Obstet Gynecol. 2017;216(5):497.e1–10. https://doi.org/10.1016/j.ajog.2016.12.020.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Austin Bachar, who designed the figures demonstrating upper-extremity angles.

Funding

Dr. Sutkin has research funding from the Intuitive Foundation. That funding and research are unrelated to the work described in this manuscript.

This study was funded by the National Institute of Biomedical Imaging and Bioengineering (1R21EB025272-01A1).

Author information

Authors and Affiliations

Authors

Contributions

G. Sutkin: protocol development, data collection and analysis, manuscript writing; M.A. Arif: protocol development, data collection, manuscript editing; G.W. King: protocol development, data collection, manuscript editing; A.-L. Cheng: protocol development, data analysis, manuscript editing; A.P. Stylianou: protocol development, data management and analysis, manuscript editing.

Corresponding author

Correspondence to Gary Sutkin.

Ethics declarations

Ethics Approval

This study was approved/expedited by the University of Missouri Kansas City IRB (#2019360).

Conflicts of Interest

None.

Additional information

Handling Editor: Jaromir Masata

Editor in Chief: Maria A. Bortolini

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sutkin, G., Arif, M.A., Cheng, AL. et al. Surgeon Upper Extremity Kinematics During Error and Error-Free Retropubic Trocar Passage. Int Urogynecol J (2024). https://doi.org/10.1007/s00192-024-05772-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00192-024-05772-w

Keywords

Navigation