Skip to main content
Log in

Learning to trust strangers: an evolutionary perspective

  • Regular Article
  • Published:
Journal of Evolutionary Economics Aims and scope Submit manuscript

Abstract

What if living in a relatively trustworthy society was sufficient to blindly trust strangers? In this paper we interpret generalized trust as a learning process and analyse the trust game paradox in light of the replicator dynamics. Given that trust inevitably implies doubts about others, we assume incomplete information and study the dynamics of trust in buyer-supplier purchase transactions. Considering a world made of “good” and “bad” suppliers, we show that the trust game admits a unique evolutionarily stable strategy: buyers may trust strangers if it is not too risky to do so. Examining the situation where some players may play either as trustor or as trustee we show that this result is robust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Note that many contributions study determinants of generalized trust by focusing on the correlation between generalized trust and variables such as democracy (e.g., Bjornskov 2006), political participation (e.g., Montoro and Puchades 2010), professional associations (e.g., Sabatini 2009), economic growth (e.g., Knack and Keefer 1997), income inequality (e.g., Uslaner 2002; Yamamura 2008), education (e.g., Knack and Zak 2002), ethnicity (e.g., Holm and Danielson 2005) or religions (e.g., La Porta et al. 1997). They offer detailed and precise estimates of possible determinants of trust and should not be envisioned as competing but complementing our approach.

  2. Fehr (2009), in a synthesis of leading achievements in neuro-economics and behavioural economics, shows that trust may be explained as the conjunction of three elements: beliefs about other people’s trustworthiness, risk preferences, and social preferences (in particular, betrayal aversion).

  3. To justify this modelling choice, recall that Schlag (1998) argues that the limiting case of a learning process that depends on imitation yields the replicator dynamics. Erev and Roth (1998) show that some of the learning models in the psychology literature are approximations of the replicator dynamics model.

  4. We are not interested in this paper on the evolution of trustworthiness. Trustworthiness could spread in a population as a result of learning or of evolutionary pressure. This question will be analysed later in this research project.

  5. For readability purpose we assume supplier is a he and buyer is a she.

  6. From an evolutionary perspective, agents are identified with a strategy, and the relative frequency of a strategy within the population is the proportion of agents that adopt it.

  7. Note that this setting is more general than the usual repeated games because updating belief is not exogenous.

  8. Several authors define alternative learning models, but alternative adaptation rules lead inexorably towards the replicator dynamics (see among others Gale et al. 1995; Björnested and Weibull 1996). The axiomatic of the learning rules follows this trend by determining the conditions that induce the replicator dynamics (Börgers and Sarin 1997); the axioms that are introduced define the functional form of a desirable learning rule. Schlag (1998) is the only one that proposes a derivation of the replicator dynamics on the basis of an individual behaviour chosen optimally.

  9. Note that for asymmetric games, Selten (1983, 1988) proposed the more general concept of limit evolutionarily stable strategy (LESS). The LESS reflects the idea that the equilibrium strategy may be seen as the limit of ESS for close perturbed games. In these perturbed games, admissible strategies may be required to play some actions with arbitrarily small probability. We use to study the LESS of a game when there is no ESS. This is not the case in our model.

  10. See also the discussion of Fehr (2009) on the self-reinforcing aspect of trust and trustworthiness. According to this author “the empirical evidence suggests that trust can be self-reinforcing” (p. 261).

References

  • Ahn TK, Esarey J (2008) A dynamic model of generalizad social trust. J Theor Polit 20(2):157–180

    Article  Google Scholar 

  • Alesina A, La Ferrara E (2000) Participation in heterogeneous communities. Q J Econ 115:847–904

    Article  Google Scholar 

  • Berg J, Dickhaut J, McCabe K (1995) Trust, reciprocity, and social history. Gam Econ Behav 10:122–142

    Article  Google Scholar 

  • Bicchieri C, Duffy J, Tolle G (2004) Trust among strangers. Philos Sci 71:1–34

    Article  Google Scholar 

  • Björnested J, Weibull J (1996) Nash equilibrium and evolution by imitation. In: Arrow K, Colombatto E, Perlman M, Schmidt C (eds) The rational foundations of economic behaviour. MacMillan, London, pp 155–171

    Google Scholar 

  • Bjornskov C (2006) Determinants of generalized trust: a cross vountry comparison. Public Choice 130:1–21

    Article  Google Scholar 

  • Börgers T, Sarin R (1997) Learning through reinforcement and replicator dynamics. J Econ Theo 77:1–14

    Article  Google Scholar 

  • Bower AG, Garber S, Watson JC (1996) Learning about a population of agents and the evolution of trust and cooperation. Int J Ind Organ 15:165–190

    Article  Google Scholar 

  • Bravo G, Tamborino L (2008) The evolution of trust in non-simultaneous exchange situations. Ration Soc 20:85–113

    Article  Google Scholar 

  • Camerer C, Weigelt K (1988) Experimental tests of a sequential equilibrium reputational model. Econometrica 56:1–36

    Article  Google Scholar 

  • Cochard F, Van Nguyen P, Willinger M (2004) Trusting behavior in a repeated investment game. J Econ Behav Organ 55:31–44

    Article  Google Scholar 

  • Cook K, Cooper R (2003) Experimental studies of cooperation, trust and social exchange. In: Ostrom E, Walker J (eds) Trust and reciprocity: interdisciplinary lessons from experimental research. Russell Sage Foundation, New York, pp 209–244

    Google Scholar 

  • Cox C (2004) How to identify trust and reciprocity. Gam Econ Behav 46:260–281

    Article  Google Scholar 

  • Deutsch M (1958) Trust and suspicion. J Confl Resolut 2:265–279

    Article  Google Scholar 

  • Dubois D, Willinger M (2007) The role of players’ identification in the population on the trusting and the trustworthy behaviour: an experimental investigation. Working paper Lameta Montpellier

  • Engelmann D, Normann HT (2010) Maximum effort in the minimum effort game. Exp Econ 13:249–259

    Article  Google Scholar 

  • Erev I, Roth AE (1998) Predicting how people play games: reinforcement learning in experimental games with unique, mixed strategy equilibria. Am Econ Rev 88:848–881

    Google Scholar 

  • Fehr E (2009) On the economics and biology of trust. J Europ Eco Ass 7:235–266

    Article  Google Scholar 

  • Fehr E, Schmidt M (1999) A theory of fairness, competition and cooperation. Q J Econ 114:817–868

    Article  Google Scholar 

  • Fukuyama F (1995) Trust: the social virtues and the creation of prosperity. Free press, New York

    Google Scholar 

  • Gale J, Binmore K, Samuelson L (1995) Learning to be imperfect: the ultimatum game. Gam Econ Behav 8:56–90

    Article  Google Scholar 

  • Gardner R, Morris MR (1991) The evolutionary stability of bluffing in a class of extensive form games. In: Selten R (ed) Game equilibrium models, vol. 1: evolution and game dynamics. Springer, Berlin, pp 182–194

    Google Scholar 

  • Gautschi T (1999) A hostage trust game with incomplete information and fairness considerations of the trustee. Working Paper, Utrecht University, Department of Sociology

  • Gintis H (2000) Game theory evolving. Princeton University Press, Princeton

    Google Scholar 

  • Glaeser EL, Laibson DI, Scheinkman JA, Soutter CL (2000) Measuring trust. Q J Econ 115:811–846

    Article  Google Scholar 

  • Granovetter M (1985) Economic action and social structure: the problem of embeddedness. Am J Sociol 91:481–510

    Article  Google Scholar 

  • Güth W, Kliemt H (1994) Competition or co-operation: on the evolutionary economics of trust, exploitation and moral attitudes. Metroeconomica 45:155–187

    Article  Google Scholar 

  • Güth W, Kliemt H, Peleg B (2000) Co-evolution of preferences and information in simple games of trust. Ger Econ Rev 1:83–110

    Article  Google Scholar 

  • Holm JJ, Danielson A (2005) Tropic trust versus nordic trust: experimental evidence from Tanzania and Sweden. Econ J 115:505–532

    Article  Google Scholar 

  • Kandori M (1992) Social norms and community enforcement. Rev Econ Stud 59:63–80

    Article  Google Scholar 

  • Karlan DS (2005) Using experimental economics to measure social capital and predict financial decisions. Am Econ Rev 95:1688–1699

    Article  Google Scholar 

  • Katz HA, Rotter JB (1969) Interpersonal trust scores of college students and their parents. Child Dev 40:657–661

    Article  Google Scholar 

  • Knack S, Keefer P (1997) Does social capital have an economic payo? A cross-country investigation. Q J Econ 112:1251–1288

    Article  Google Scholar 

  • Knack S, Zak PJ (2002) Building trust: public policy, interpersonal trust, and economic development. Sup Court Econ Rev 10:91–107

    Google Scholar 

  • Kreps D (1990) Corporate culture and economic theory. In: Alt JE, Shepsle KA (eds) Perspectives on positive political economy. Cambridge University Press, Cambridge, pp 90–143

    Chapter  Google Scholar 

  • Kreps DM (1993) Game theory and economic modeling, 4th edn. Clarendon Press, Oxford

    Google Scholar 

  • La Porta R, Lopez-de-Silanes F, Shleifer A, Vishny RW (1997) Trust in large organizations. Am Econ Rev 87:333–338

    Google Scholar 

  • Lahno B (2004) Is trust the result of bayesian learning? In: Behnke J, Plümper T, Burth HP (eds) Jahrbuch für Handlungs- und Entscheidungstheorie, Band 3. VS-Verl., Wiesbaden, pp 47–68

  • Maynard Smith J, Price GR (1973) The logic of animal conflicts. Nature 246:15–18

    Article  Google Scholar 

  • Montoro JD, Puchades M (2010) Social capital and political participation. Econ Bull 30:3329–3347

    Google Scholar 

  • Nooteboom B (2002) Trust: forms, functions, foundations, failures and figures. Edward Elgar, Cheltenham UK

    Google Scholar 

  • Nooteboom B (2010) The dynamics of trust: communication, action and third parties. Mimeo Tilburg

  • Ortmann A, Fitzgerald J, Boeing C (2000) Trust, reciprocity, and social history: a re-examination. Exp Econ 3:81–100

    Google Scholar 

  • Putnam RD (1993) Making democracy work: civic traditions in modern Italy. Princeton University Press, Princeton

    Google Scholar 

  • Putnam RD (2000) Bowling alone: the collapse and revival of American community. Simon and Schuster, New York

    Google Scholar 

  • Sabatini F (2009) The relationship between trust and networks. An exploratory empirical analysis. Econ Bull 29:661–672

    Google Scholar 

  • Schlag KH (1998) Why imitate, and if so, how? A bounded rationality approach to multi-armed bandits. J Econ Theo 78:127–159

    Google Scholar 

  • Selten R (1980) A note on evolutionarily stable strategies in asymmetric animal conflicts. J Theor Biol 84:93–101

    Article  Google Scholar 

  • Selten R (1983) Evolutionary stability in extensive two-agent games. Math Soc Sci 5:269–363

    Article  Google Scholar 

  • Selten R (1988) Evolutionary stability in extensive two-agent games: correction and further development. Math Soc Sci 16:223–266

    Article  Google Scholar 

  • Snijders C, Keren G (1999) Determinants of trust. In: Budescu DV, Erev I, Zwick R (eds) Games and human behavior. Lawrence Erlbaum, Mahwah, pp 355–385

    Google Scholar 

  • Taylor P, Jonker L (1978) Evolutionarily stable strategies and game dynamics. Math Biosci 40:145–156

    Article  Google Scholar 

  • Tsuji R, Harihara M (2002) Urban and rural social networks and general trust. In: Proceedings of the 43rd JSSP Conference (Japan), pp 114–115

  • Uslaner EM (2002) The moral foundations of trust. Cambridge University Press, New York

    Google Scholar 

  • Uslaner EM (2004) Where you stand depends on where your grand parents sat: the inheritability of generalized trust. Mimeo, University of Maryland

  • Yamagishi T, Cook KS, Watabe M (1998) Uncertainty, trust and commitment formation in the United States and Japan. Am J Sociol 104:165–194

    Article  Google Scholar 

  • Yamamura E (2008) Determinants of trust in a racially homogeneous society. Econ Bull 26(1):1–9

    Google Scholar 

  • Yosano A, Hayashi N (2005) Social stratification, intermediary groups and creation of trustfulness. Sociol Theo Meth 20:27–44

    Google Scholar 

  • Zeeman EC (1980) Population dynamics from game theory. In: Nitecki Z, Robinson C (eds) Global theory of dynamical systems, lecture notes in mathematics, vol 819. Springer, Berlin, pp 471–497

    Chapter  Google Scholar 

  • Zucker LG (1986) Production of trust: institutional sources of economic structure. Res Organ Behav 8:53–111

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarik Tazdaït.

Appendix

Appendix

Proof of Proposition 1

The Jacobian of the replicator dynamics at any point r = (p1, p2G, p2B) can be expressed as follows:

$$ \mbox{J}\left( \mbox{r} \right)=\left( {{\begin{array}{*{20}c} {\partial \dot{\rm p}_1 /\partial {\rm p}_1 } \quad\quad& {\partial \dot{\rm p}_1 /\partial {\rm p}_{2{\rm G}} } \quad\quad& {\partial \dot{\rm p}_1 /\partial {\rm p}_{2{\rm B}} } \\ {\partial \dot{\rm p}_{2{\rm G}} /\partial {\rm p}_1 } \quad\quad& {\partial \dot{\rm p}_{2{\rm G}} /\partial {\rm p}_{2{\rm G}} } \quad\quad& {\partial \dot{\rm p}_{2{\rm G}} /\partial {\rm p}_{2{\rm B}} } \\ {\partial \dot{\rm p}_{2{\rm B}} /\partial {\rm p}_1 } \quad\quad& {\partial \dot{\rm p}_{2{\rm B}} /\partial {\rm p}_{2{\rm G}} } \quad\quad& {\partial \dot{\rm p}_{2{\rm B}} /\partial {\rm p}_{2{\rm B}} } \\ \end{array} }} \right), $$

and therefore:

$$ {\rm J}({\rm r}) \!=\!\!\left(\!{{\begin{array}{*{20}c} {\left( {1\!\!-\!\!2{\rm p}_1 } \right)\left[ {\mbox{pp}_{2{\rm G}} {\rm c}_1 \!\!+\!\!{\rm p}\left( {1\!\!-\!\!{\rm p}_{2{\rm G}} } \right){\rm b}_1 \!\!+\!\!\left( {1\!\!-\!\!{\rm p}} \right){\rm p}_{2{\rm B}} {\rm c}_1 \!\!+\!\!\left( {1\!\!-\!\!{\rm p}} \right)\left( {1\!\!-\!\!{\rm p}_{2{\rm B}} } \right){\rm b}_1 } \right]} \hfill & {{\rm p}_1 \left( {1\!\!-\!\!{\rm p}_1 } \right){\rm p}\left( {{\rm c}_1 \!\!-\!\!{\rm b}_1 } \right)} \hfill & {\!\!-\!{\rm p}_1 \left( {1\!\!-\!\!{\rm p}_1 } \right)\left( {1\!\!-\!\!{\rm p}} \right)\left( {{\rm c}_1 \!\!-\!\!{\rm b}_1 } \right)} \hfill \\[3pt] {{\rm p}_{2{\rm G}} \left( {1\!\!-\!\!{\rm p}_{2{\rm G}} } \right)\left( {{\rm c}_2 \!\!+\!\!\varepsilon \!-\!{\rm b}_2 } \right)} \hfill & {\left( {1\!-\!2{\rm p}_{2{\rm G}} } \right){\rm p}_1 \left( {{\rm c}_2 \!+\!\varepsilon \!\!-\!\!{\rm b}_2 } \right)} \hfill & 0 \hfill \\[3pt] {{\rm p}_{2{\rm B}} \left( {1\!\!-\!\!{\rm p}_{2{\rm B}} } \right)\left( {{\rm c}_2 \!\!+\!\!\beta \!-\!{\rm b}_2 } \right)} \hfill & 0 \hfill & {\left( {1\!\!-\!\!2{\rm p}_{2{\rm B}} } \right){\rm p}_1 \left( {{\rm c}_2 \!\!+\!\!\beta \!\!-\!\!{\rm b}_2 } \right)} \hfill \\ \end{array} }} \!\right) $$

According to definition (1), in order to characterize the ESS we should study the eigenvalues of the matrix J in each of the 8 points that are candidates.

Let r* = (1,1,1). The Jacobian is:

$$ \mbox{J}\left( 1,\!1,\!1 \right)=\left( {{\begin{array}{*{20}c} {-\mbox{c}_1 } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & {-\left( {\mbox{c}_2 +\varepsilon -{\rm b}_2 } \right)} \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {-\left( {\mbox{c}_2 +\beta -{\rm b}_2 } \right)} \hfill \\ \end{array} }} \right). $$

The eigenvalues are: –c1, –(c2 + ε – b2), –(c2 + β – b2). They are all negative (which shows that (1,1,1) is hyperbolically stable) if:

$$ \mbox{c}_1 >0,\;({\rm c}_2 +\varepsilon -{\rm b}_2 )>0\;{\rm and}\;({\rm c}_2 +\beta -{\rm b}_2 )>0. $$

The condition on the gains of 2B (i.e. (c2 + β – b2) > 0) contradicts one of the assumption of the trust game and we deduce that (1,1,1) is not an ESS. In the same manner, we show that (1,0,1) and (1,0,0) are also not ESS.

We focus now on (1,1,0), (0,1,1), (0,1,0), (0,0,1) and (0,0,0). For (1,1,0), we have:

$$ \mbox{J}(1,\!1,\!0)=\left( {{\begin{array}{*{20}c} {-\!\left[\mbox{pc}_1 +(1-{\rm p}){\rm b}_1\right]} \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & {-({\rm c}_2 +\varepsilon -{\rm b}_2 )} \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {(\mbox{c}_2 +\beta -{\rm b}_2 )} \hfill \\ \end{array} }} \right). $$

and this point is an ESS because conditions on the gains of the two types of player 2 do not contradict the assumptions of the model. We have: c2 + ε − b2 > 0 and c2 + β − b2 < 0 and these conditions are verified for:

$$ {\rm p}>\frac{-{\rm b}_1}{{\rm c}_1 -{\rm b}_1 }>0. $$

Regarding (0,1,1), (0,1,0), (0,0,1) and (0,0,0), we obtain respectively:

$$ {\begin{array}{*{20}c} {\mbox{J}(0,\!1,\!1)=\left( {{\begin{array}{*{20}c} {\mbox{c}_1 } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill \\ \end{array} }} \right),\;\mbox{J}(0,\!1,\!0)=\left( {{\begin{array}{*{20}c} {\mbox{pc}_1 +(1-{\rm p}){\rm b}_1 } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill \\ \end{array} }} \right),} \\[30pt] {\mbox{J}(0,\!0,\!1)=\left( {{\begin{array}{*{20}c} {\mbox{pb}_1 +(1-{\rm p}){\rm c}_1 } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill \\ \end{array} }} \right),\;\mbox{J}(0,\!0,\!0)=\left( {{\begin{array}{*{20}c} {\mbox{b}_1 } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill \\ \end{array} }} \right).} \\ \end{array} } $$

For each of those cases, 0 is an eigenvalue and they are not ESS which concludes the proof.□

Proof of Proposition 2

We proceed as in proposition 1, the difference being that now there is a third type of player that may both play as buyer or seller. We denote by p3G (respectively p3B) the proportion of players 3G (respectively 3B) choosing T when buying and choosing H when selling. The complement 1 − p3G (respectively 1 − p3B) is the proportion of players 3G (respectively 3B) choosing M when buying and E when selling.

We start determine the replication equation associated to the behaviour of player 1. If she matches a player 2, her expected payoff is pp2Gc1 + p(1 − p2G)b1 + (1 − p)p2Bc1 + (1 − p)(1 − p2B)b1 and if she matches a player 3, her expected payoff is pp3Gc1 + p(1 − p3G)b1 + (1 − p)p3Bc1 + (1 − p)(1 − p3B)b1. Since player 1 matches a player 2 with probability 1/2 and a player 3 with a probability 1/2, her expected payoff is:

$$\begin{array}{rll} \pi_1 &=& \frac{1}{2}\left[{\rm p}({\rm p}_{2{\rm G}} +{\rm p}_{3{\rm G}} ){\rm c}_1 +{\rm p}(2-{\rm p}_{2{\rm G}} -{\rm p}_{3{\rm G}} ){\rm b}_1 \right. \\ && \left.+\,(1-{\rm p})({\rm p}_{2{\rm B}}+{\rm p}_{3{\rm B}} ){\rm c}_1 +(1-{\rm p})(2-{\rm p}_{2{\rm B}} +{\rm p}_{3{\rm B}} ){\rm b}_1 \right]. \end{array} $$

The average gain of all 1-players is \(\pi_1^{\rm m} ={\rm p}_1\pi_1 +(1-{\rm p}_1 )0\) and the growth rate of p1 is \(\dot{\rm p}_1 ={\rm p}_1 (1-{\rm p}_1 )\pi_1 ={\rm p}_1 (1-{\rm p}_1 )\frac{1}{2}[{\rm p}({\rm p}_{2{\rm G}} +{\rm p}_{3{\rm G}} ){\rm c}_1 +{\rm p}(2-{\rm p}_{2{\rm G}} -{\rm p}_{3{\rm G}} )\mbox{b}_1 +(1-{\rm p})({\rm p}_{2{\rm B}} +{\rm p}_{3{\rm B}}){\rm c}_1 +(1-{\rm p})(2-{\rm p}_{2{\rm B}} +{\rm p}_{3{\rm B}} ){\rm b}_1 ]\).

Consider now player 2G. If he matches with a player 1, his expected payoff is p1 (c1 + ε). If he matches with a player 3, his expected payoff is pp3G (c2 + ε) + (1 − p)p3B(c2 + ε). Again, given player 2G matches with a player 1 with a probability 1/2 and with a player 3 with a probability 1/2, his expected gain is:

$$ \pi_{2{\rm G}} =\frac{1}{2}(\mbox{c}_2 +\varepsilon )\left[{\rm p}_1+{\rm pp}_{3{\rm G}} +(1-{\rm p}){\rm p}_{3{\rm B}} \right]. $$

The average gain of all 2G-players is:

$$ \pi_{2{\rm G}}^{\rm m} =\frac{1}{2}\left[{\rm p}_{2{\rm G}} ({\rm c}_2 +\varepsilon )+(1-{\rm p}_{2{\rm G}} )\mbox{b}_2 \right]\left[{\rm p}_1 +{\rm pp}_{3{\rm G}} +(1-{\rm p}){\rm p}_{3{\rm B}}\right] $$

and the growth rate of p2G is:

$$ \dot{\rm p}_{2{\rm G}} ={\rm p}_{2{\rm G}} (1-{\rm p}_{2{\rm G}} )\frac{1}{2}({\rm c}_2 +\varepsilon -{\rm b}_2 )\left[{\rm p}_1 +{\rm pp}_{3{\rm G}} +(1-{\rm p}){\rm p}_{3{\rm B}} \right]. $$

Similarly, we deduce that:

$$ \dot{\rm p}_{2{\rm B}}={\rm p}_{2{\rm B}} (1-{\rm p}_{2{\rm B}} )\frac{1}{2}({\rm c}_2 +\beta -{\rm b}_2 )\left[{\rm p}_1 +{\rm pp}_{3{\rm G}} +(1-{\rm p}){\rm p}_{3{\rm B}} \right]. $$

Finally, consider a hybrid player 3G. If acting as a buyer, his expected payoff is pp2Gc1 + p(1 − p2G)b1 + (1 − p)p2Bc1 + (1 − p)(1 − p2B)b1 and if acting as a supplier, his expected payoff is p1 (c2 + ε). Total expected gain is then:

$$\begin{array}{rll} \pi_{3{\rm{G}}} &=&\frac{1}{2}\left[{\rm p}_1 ({\rm c}_2 +\varepsilon )+\mbox{pp}_{2{\rm G}} {\rm c}_1 +{\rm p}(1-{\rm p}_{2{\rm G}} )\mbox{b}_1\right. \\&&\left.+\;(1-{\rm p}){\rm p}_{2{\rm B}} {\rm c}_1 +(1-{\rm p})(1-{\rm p}_{2{\rm B}})\mbox{b}_1 \right] \end{array} $$

and we deduce:

$$ \pi_{3{\rm G}}^{\rm m} ={\rm p}_{3{\rm G}} \pi_{3{\rm G}} +\frac{1}{2}(1-{\rm p}_{3{\rm G}} ){\rm p}_1 {\rm b}_2 . $$

The growth rate of p3G is:

$$\begin{array}{rll} \dot{\rm p}_{3{\rm G}} &=& \frac{1}{2}{\rm p}_{3{\rm G}} (1-{\rm p}_{3{\rm G}})\left[{\rm p}_1 ({\rm c}_2 +\varepsilon -{\rm b}_2 )+{\rm pp}_{2{\rm G}} {\rm c}_1 \right. \\ && \left.+\;{\rm p}(1-{\rm p}_{2{\rm G}} ){\rm b}_1 +(1-{\rm p}){\rm p}_{2{\rm B}} {\rm c}_1 +(1-{\rm p})(1-{\rm p}_{2{\rm B}} )\mbox{b}_1 \right]. \end{array} $$

Similarly, we obtain:

$$\begin{array}{rll} \dot{\rm p}_{3{\rm B}} &=& \frac{1}{2}{\rm p}_{3{\rm B}} (1-{\rm p}_{3{\rm B}} )\left[{\rm p}_1 ({\rm c}_2 +\beta -{\rm b}_2 )+{\rm pp}_{2{\rm G}} {\rm c}_1\right. \\&&\left.+\;{\rm p}(1-{\rm p}_{2{\rm G}} )\mbox{b}_1 +(1-{\rm p}){\rm p}_{2{\rm B}} {\rm c}_1 +(1-{\rm p})(1-{\rm p}_{2{\rm B}} ){\rm b}_1 \right]. \end{array} $$

The Jacobian of the coefficient matrix of the above dynamics is the following:

$$ {\rm J(r)}=\left( {{\begin{array}{*{20}c} {\displaystyle\frac{\partial \dot{\rm p}_1 }{\partial {\rm p}_1 }} \hfill &{\displaystyle\frac{\partial \dot{\rm p}_1 }{\partial {\rm p}_{2{\rm G}} }} \hfill & {\displaystyle\frac{\partial \dot{\rm p}_1 }{\partial {\rm p}_{{\rm 2B}} }} \hfill & {\displaystyle\frac{\partial \dot{\rm p}_1 }{\partial {\rm p}_{{\rm 3G}} }} \hfill & {\displaystyle\frac{\partial \dot{\rm p}_1 }{\partial {\rm p}_{{\rm 3B}} }} \hfill \\[15pt] {\displaystyle\frac{\partial \dot{\rm p}_{2{\rm G}} }{\partial {\rm p}_1 }} \hfill & {\displaystyle\frac{\partial \dot{\rm p}_{2{\rm G}} }{\partial {\rm p}_{2{\rm G}} }} \hfill & {\displaystyle\frac{\partial \dot{\rm p}_{{\rm 2G}} }{\partial {\rm p}_{{\rm 2B}} }} \hfill &{\displaystyle\frac{\partial \dot{\rm p}_{{\rm 2G}} }{\partial {\rm p}_{{\rm 3G}} }} \hfill & {\displaystyle\frac{\partial \dot{\rm p}_{{\rm 2G}} }{\partial {\rm p}_{{\rm 3B}} }} \hfill \\[15pt] {\displaystyle\frac{\partial \dot{\rm p}_{2{\rm B}} }{\partial {\rm p}_1 }} \hfill & {\displaystyle\frac{\partial \dot{\rm p}_{2{\rm B}}}{\partial {\rm p}_{2{\rm G}}}} \hfill & {\displaystyle\frac{\partial \dot{\rm p}_{{\rm 2B}}}{\partial {\rm p}_{{\rm 2B}}}} \hfill &{\displaystyle\frac{\partial \dot{\rm p}_{{\rm 2B}} }{{\rm p}_{3{\rm G}}}} \hfill & {\displaystyle\frac{\partial \dot{\rm p}_{{\rm 2B}} }{{\rm p}_{{\rm 3B}} }} \hfill \\[15pt] {\displaystyle\frac{\partial \dot{\rm p}_{3{\rm G}}}{\partial {\rm p}_1}} \hfill & {\displaystyle\frac{\partial \dot{\rm p}_{3{\rm G}}}{\partial {\rm p}_{{\rm 2G}}}} \hfill & {\displaystyle\frac{\partial \dot{\rm p}_{{\rm 3G}}}{\partial {\rm p}_{{\rm 2B}}}} \hfill &{\displaystyle\frac{\partial \dot{\rm p}_{{\rm 3G}}}{\partial {\rm p}_{{\rm 3G}}}} \hfill & {\displaystyle\frac{\partial \dot{\rm p}_{{\rm 3G}}}{\partial {\rm p}_{{\rm 3B}}}} \hfill \\[15pt] {\displaystyle\frac{\partial \dot{\rm p}_{3{\rm B}}}{\partial {\rm p}_1}} \hfill & {\displaystyle\frac{\partial \dot{\rm p}_{{\rm 3B}}}{\partial {\rm p}_{{\rm 2G}}}} \hfill & {\displaystyle\frac{\partial \dot{\rm p}_{{\rm 3B}}}{\partial {\rm p}_{{\rm 2B}}}} \hfill &{\displaystyle\frac{\partial \dot{\rm p}_{{\rm 3B}}}{\partial {\rm p}_{{\rm 3G}}}} \hfill & {\displaystyle\frac{\partial \dot{\rm p}_{{\rm 3B}}}{\partial {\rm p}_{{\rm 3B}}}} \hfill \\ \end{array} }} \right) $$

For point r ∗  = (1,1,0,1,1), we obtain:

$$ \begin{array}{rll} && {\rm J}(1,\!1,\!0,\!1,\!1) \\ &&=\left( {{ \begin{array}{*{20}c} -\frac{ {\left[(1+\rm p){c}_1 +(1-\rm p){b}_1\right.}{2}} \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\[3pt] 0 \hfill & {-(\mbox{c}_2 +\varepsilon -{\rm b}_2 )} \hfill & 0 \hfill &0 \hfill & 0 \hfill \\[3pt] 0 \hfill & 0 \hfill & {(\mbox{c}_2 +\beta -{\rm b}_2 )} \hfill & 0 \hfill & 0 \hfill \\[3pt] 0 \hfill & 0 \hfill & 0 \hfill & {-\frac{[\mbox{c}_2 +\varepsilon -{\rm b}_2 +{\rm pc}_1 +(1-{\rm p}){\rm b}_1 ]}{2}} \hfill & 0 \hfill \\[3pt] 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {-\frac{[\mbox{c}_2 +\beta -{\rm b}_2 +{\rm pc}_1 +(1-{\rm p}){\rm b}_1 ]}{2}} \hfill \\ \end{array} }} \right) \end{array} $$

And we deduce that the eigenvalues are negatives if:

$$ (1+\mbox{p)c}_1 +(1-{\rm p)b}_1 >0 $$
(2)
$$ \mbox{c}_2 +\varepsilon -{\rm b}_2 >0 $$
(3)
$$ \mbox{c}_2 +\beta -{\rm b}_2 <0 $$
(4)
$$ \mbox{c}_{\rm 2} +\varepsilon -{\rm b}_2 +{\rm pc}_1 +(1-{\rm p}){\rm b}_1 >0 $$
(5)
$$ \mbox{c}_{\rm 2} +\beta -\mbox{b}_2 +{\rm pc}_{\rm 1} +(1-{\rm p}){\rm b}_1 >0. $$
(6)

By assumption, Eqs. 3 and 4 are always true and Eqs. 2, 5 and 6 lead to the following inequality:

$$ {\rm p}>\mbox{Max}\left( {\frac{-\mbox{b}_1 -{\rm c}_1 }{{\rm c}_1 -{\rm b}_1 },\frac{\mbox{b}_2 -{\rm c}_2 +\beta -{\rm b}_1 }{{\rm c}_1 -{\rm b}_1 },\frac{\mbox{b}_2 -{\rm c}_2 -\varepsilon -{\rm b}_1 }{\mbox{c}_1 -{\rm b}_1 }} \right). $$

Given the assumption of the model, we deduce that (1,1,0,1,1) is an ESS when:

$$ {\rm p}>\frac{\mbox{b}_2 -{\rm c}_2 +\beta -{\rm b}_1 }{{\rm c}_1 -{\rm b}_1 }. $$

For point r* = (1,1,0,1,0), the Jacobian is:

$$ \begin{array}{rll} &&\mbox{J}(1,\!1,\!0,\!1,\!0)\\&&=\left( {{\begin{array}{*{20}c} {-[\mbox{pc}_1 +(1-\mbox{p)b}_1 ]} \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & {\frac{(1+\mbox{p)(c}_2 +\varepsilon -\mbox{b}_2 )}{2}} \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {\frac{(1+\mbox{p)(c}_2 +\beta -{\rm b}_2 )}{2}} \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & {-\frac{[\mbox{c}_2 +\varepsilon -{\rm b}_2 +{\rm pc}_1 +(1-{\rm p}){\rm b}_1 ]}{2}} \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\frac{[\mbox{c}_2 +\beta -{\rm b}_2 +{\rm pc}_1 +(1-{\rm p}){\rm b}_1 ]}{2}} \hfill \\ \end{array} }} \right) \end{array} $$

and we deduce that the eigenvalues are negatives if:

$$ \mbox{pc}_1 +(1-{\rm p})\mbox{b}_1 >0 $$
(7)
$$ \mbox{c}_2 +\varepsilon -{\rm b}_2 >0 $$
(8)
$$ \mbox{c}_2 +\beta -{\rm b}_2 <0 $$
(9)
$$ \mbox{c}_2 +\varepsilon -{\rm b}_2 +{\rm pc}_1 +(1-{\rm p})\mbox{b}_1 >0 $$
(10)
$$ \mbox{c}_2 +\beta -{\rm b}_2 +\mbox{pc}_1 +(1-{\rm p})\mbox{b}_1 <0. $$
(11)

Inequalities (8) and (9) are always true and we deduce from Eqs. 7, 10 and 11 that:

$$ \frac{\mbox{b}_2 -{\rm c}_2 -\beta -{\rm b}_1 }{{\rm c}_1 -{\rm b}_1 }>{\rm p}>{\rm Max}\left( {\frac{-\mbox{b}_1 }{{\rm c}_1 -{\rm b}_1 },\frac{\mbox{b}_2 -{\rm c}_2 -\varepsilon -{\rm b}_1 }{{\rm c}_1 -{\rm b}_1 }} \right). $$

Given − b1 > b2 − c2 − ε − b1, we deduce:

$$ \frac{\mbox{b}_2 -{\rm c}_2 -\beta -{\rm b}_1 }{{\rm c}_1 -{\rm b}_1 }>{\rm p}>\frac{-\mbox{b}_1 }{{\rm c}_1 -{\rm b}_1 } $$

which is the condition for (1,1,0,1,0) to be an ESS. End of the proof. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Courtois, P., Tazdaït, T. Learning to trust strangers: an evolutionary perspective. J Evol Econ 22, 367–383 (2012). https://doi.org/10.1007/s00191-011-0247-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00191-011-0247-z

Keywords

JEL Classification

Navigation