Skip to main content
Log in

Simulation analysis on resonance and direct approaches for determining free core nutation parameters with celestial pole offsets

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Diurnal tidal oscillations in the coupled atmosphere–ocean system generate important contributions to the Earth’s free core nutation (FCN) and annual and sub-annual components of forced nutation in the celestial pole offsets. The determination of FCN parameters cannot avoid the influence of geophysical fluid excitation neither with the direct analysis of FCN signal (direct approaches) nor with the resonance analysis of forced nutation (resonance approaches). There is a significant difference in the FCN parameters obtained with resonance and direct approaches from celestial pole offsets observed through very long baseline interferometry (VLBI). The source of the difference between the two lacks quantitative analysis, which causes difficulties in interpreting the validity of the derived FCN parameters. Using both approaches, we conducted a simulation of celestial pole offsets to quantitatively demonstrate how geophysical fluid excitation affects the determination of FCN parameters from VLBI observations. Using the same excitation source, the FCN period obtained by the direct approach deviated from the set value (430.21 d) by more than 10 d, while the FCN period obtained by the resonance approach showed no deviation from the set value by more than 1 d. The results indicate that the resonance approach more accurately reflects the intrinsic period of the FCN. The impact of atmospheric and oceanic contributions on the determination of the FCN period with the resonance approach was within 2 d. Numerical simulation shows that discrepancies in FCN parameters caused by geophysical excitation were nonnegligible in constructing accurate FCN models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

The data will be provided upon reasonable request.

References

  • Belda S, Ferrandiz JM, Heinkelmann R, Nilsson T, Schuh H (2016) Testing a new free core nutation empirical model. J Geodyn 94:59–67

    Article  Google Scholar 

  • Bizouard C, Brzeziński A, Petrov S (1998) Diurnal atmospheric forcing and temporal variations of the nutation amplitudes. J Geod 72(10):561–577

    Article  Google Scholar 

  • Brzeziński A (1994) Polar motion excitation by variations of the effective angular momentum function: II. Ext Model Manusc Geodaet 19:157–171

    Google Scholar 

  • Brzeziński A (2007) A simple digital filter for the geophysical excitation of nutation. J Geod 81(6–8):543–551

    Article  Google Scholar 

  • Brzeziński A, Dobslaw H, Thomas M (2014) Atmospheric and oceanic excitation of the free core nutation estimated from recent geophysical models. In: Rizos C, Willis P (eds) Proc. IAG 2011 Scientific Assembly “Earth on the Edge: Science for a Sustainable Planet”, IAG Symposia, vol 139, pp 461–466

  • Chao B (2017) On rotational normal modes of the Earth: resonance, excitation, convolution, deconvolution and all that. Geod Geodyn 8(6):371–376

    Article  Google Scholar 

  • Chao B, Hsieh Y (2015) The earths free core nutation: formulation of dynamics and estimation of eigenperiod from the very-long-baseline interferometry data. Earth Planet Sci Lett 36:483–492

    Article  Google Scholar 

  • Cui X, Sun H, Rosat S, Xu J, Zhou J, Ducarme B (2014) Investigation of the time variability of diurnal tides and resonant FCN period. J Geodyn 79:30–38

    Article  Google Scholar 

  • Cui X, Sun H, Xu J, Zhou JC, Chen XD (2018) Detection of free core nutation resonance variation in Earth tide from global superconducting gravimeter observations. Earth Planets Space 70:199

    Article  Google Scholar 

  • Cui X, Sun H, Xu J, Zhou J, Chen X (2020) Relationship between free core nutation and geomagnetic jerks. J Geod 94(4):1–13

    Article  Google Scholar 

  • Dehant V, Laguerre R, Rekier J, Rivoldini A, Triana SA, Trinh A, Hoolst TV, Zhu P (2017) Understanding the effects of the core on the nutation of the Earth. Geod Geodyn 8(6):389–395

    Article  Google Scholar 

  • Dobslaw H, Dill R (2018) Predicting Earth orientation changes from global forecasts of atmosphere-hydrosphere dynamics. Adv Space Res 61(4):1047–1054

    Article  Google Scholar 

  • Dobslaw H, Dill R, Grotzsch A, Brzezinski A, Thomas M (2010) Seasonal polar motion excitation from numerical models of atmosphere, ocean, and continental hydrosphere. J Geophys Res 115:B10406. https://doi.org/10.1029/2009B007127

    Article  Google Scholar 

  • Ducarme B, Sun H, Xu J (2007) Determination of the free core nutation period from tidal gravity observations of the GGP superconducting gravimeter network. J Geod 81:179–187

    Article  Google Scholar 

  • Florsch N, Hinderer J (2000) Bayesian estimation of the free core nutation parameters from the analysis of precise tidal gravity data. Phys Earth Planet Inter 117:21–35

    Article  Google Scholar 

  • Forget G, Campin JM, Heimbach P, Hill CN, Ponte RM, Wunsch C (2015) ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci Model Dev 8(10):3071–3104

    Article  Google Scholar 

  • Fukumori I, Wang O, Fenty I, Forget G, Heimbach P, Ponte R (2017) ECCO Version 4 Release 3, Technical Report. https://www.ecco-group.org/docs/v4r4_synopsis.pdf

  • Furuya M, Chao BF (1996) Estimation of period and Q of the Chandler wobble. Geophys J Int 127(3):693–702

    Article  Google Scholar 

  • Hinderer J, Legros H, Amalvict M (1982) A search for Chandler and nearly diurnal free wobble using Liouville equations. Geophys J R AstrSoc 71:303–332

    Article  Google Scholar 

  • Koot L, Rivoldini A, Viron OD, Dehant V (2008) Estimation of earth interior parameters from a Bayesian inversion of very long baseline interferometry nutation time series. J Geophys Res. https://doi.org/10.1029/2007JB005409

    Article  Google Scholar 

  • Koot L, Viron OD (2011) Atmospheric contributions to nutations and implications for the estimation of deep Earth’s properties from nutation observations. Geophys J Int 185(3):1255–1265

    Article  Google Scholar 

  • Krásná H, Böhm J, Schuh H (2013) Free core nutation observed by VLBI. Astron Astrophys 555(1):A29

    Article  Google Scholar 

  • Lambert SB, Dehant V (2007) The Earth’s core parameters as seen by the VLBI. Astron Astrophys 469(2):777–781

    Article  Google Scholar 

  • Lambert S (2007) Empirical model of the Free Core Nutation. Technical note available at http://syrte.obspm.fr/

  • Liu LT, Hsu H (2012) Inversion and normalization of time-frequency transform. Appl Math Inf Sci 6(1S):67–74

    Google Scholar 

  • Malkin Z (2007) Empiric models of the Earth’s free core nutation. Solar Syst Res 41(6):492–497

    Article  Google Scholar 

  • Malkin Z, Terentev D (2007) Parameters of the free core nutation from VLBI data. arXiv preprint physics/0702152

  • Marquardt D (1963) An algorithm for least-squares estimation of non-linear parameters. J Soc Ind Appl Math 11(2):431–441

    Article  Google Scholar 

  • Mathews PM, Herring TA, Buffett BA (2002) Modeling of nutation and precession: new nutation series for nonrigid Earth and insights into the Earth’s interior. J Geophys Res 107:539–554

    Article  Google Scholar 

  • Modiri S, Heinkelmann R, Belda S, Malkin Z, Hoseini M, Korte M, Ferrándiz JM, Schuh H (2021) Towards understanding the interconnection between celestial pole motion and earth’s magnetic field using space geodetic techniques. Sensors 21:7555. https://doi.org/10.3390/s21227555

    Article  Google Scholar 

  • Neuberg J, Hinderer J, Zurn W (1987) Stacking gravity tide observations in central Europe for the retrieval of the complex eigenfrequency of the nearly diurnal free wobble. Geophy J R Astr Soc 91:853–868

    Article  Google Scholar 

  • Nurul Huda I, Lambert S, Bizouard C, Ziegler Y (2020) Nutation terms adjustment to VLBI and implication for the Earth rotation resonance parameters. Geophys J Int 220(2):759–767

    Article  Google Scholar 

  • Petit G, Luzum B (2010) IERS conventions (2010), IERS Tech. Note, 36, Bundesamts für Kartogr. und Geod., Frankfurt, Germany

  • Ray RD, Boy JP, Arbic BK, Egbert GD, Erofeeva SY, Petrov L, Shriver JF (2021) The problematic psi1 ocean tide. Geophys J Int 217:1181–1192. https://doi.org/10.1093/gji/ggab263

    Article  Google Scholar 

  • Rekier J, Chao BF, Chen J, Dehant V, Rosat S, Zhu P (2022) Earth’s rotation: observations and relation to deep interior. Surv Geophys 43(1):149–175

    Article  Google Scholar 

  • Roosbeek F, Defraigne P, Feissel M, Dehant V (1999) The free core nutation period stays between 431 and 434 sidereal days. Geophys Res Lett 26(1):131–134

    Article  Google Scholar 

  • Rosat S, Lambert SB (2009) Free core nutation resonance parameters from VLBI and superconducting gravimeter data. Astron Astrophys 503:287–291

    Article  Google Scholar 

  • Sasao T, Wahr JM (1981) An excitation mechanism for the free core nutation. Geophys J R Astron Soc 64:729–746

    Article  Google Scholar 

  • Schindelegger M, Einspigel D, Salstein D, Boehm J (2016) The global S1 tide in Earth’s nutation. Surv Geophys 37:643–680

    Article  Google Scholar 

  • Schuh H, Böhm S (2021) Earth rotation. In: Gupta HK (ed) Encyclopedia of solid earth geophysics. encyclopedia of earth sciences series. Springer, Cham. https://doi.org/10.1007/978-3-030-58631-7_177

    Chapter  Google Scholar 

  • Sheppard RJ, Jordan BP, Grant EH (1970) Least squares analysis of complex data with applications to permittivity measurements. J Phys D 3(11):1759

    Article  CAS  Google Scholar 

  • Souchay J, Loysel B, Kinoshita H, Folgueira M (1999) Corrections and new developments in rigid Earth nutation theory, III, Final tables REN-2000 including crossed-nutation and spin-orbit coupling effects. Astron Astrophys Suppl Ser 135:111–131

    Article  Google Scholar 

  • Su X, Liu L, Houtse H, Wang G (2014) Long-term polar motion prediction using normal time–frequency transform. J Geod 88:145–155

    Article  Google Scholar 

  • Vondrák J, Ron C (2009) Stability of period and quality factor of free core nutation. Acta Geodyn Geomater 6(3(155)):217–224

    Google Scholar 

  • Vondrák J, Ron C (2014) Geophysical excitation of nutation–comparison of different models. Acta Geodyn Geomater 11(3):193–200

    Google Scholar 

  • Vondrák J, Ron C (2015) Earth orientation and its excitations by atmosphere, oceans, and geomagnetic jerks. Serb Astron J 191:59–66

    Article  Google Scholar 

  • Vondrák J, Weber R, Ron C (2005) Free core nutation: direct observations and resonance effects. Astron Astrophys 444(1):297–303

    Article  Google Scholar 

  • Xu J, Sun H, Luo S (2002) Study of the Earth’s free core nutation by tidal gravity data recorded with international superconducting gravimeters. Sci China Earth Sci 45(4):337–347

    Article  Google Scholar 

  • Zhou YH, Salstein DA, Chen JL (2006) Revised atmospheric excitation function series related to Earth’s variable rotation under consideration of surface topography. J Geophys Res-Atmos. https://doi.org/10.1029/2005JD006608

    Article  Google Scholar 

  • Zhou YH, Zhu Q, Salstein D (2016) Estimation of the free core nutation period by the sliding-window complex least-squares fit method. Adv Sp Res 57(10):2136–2140

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB41000000), National Natural Science Foundation of China (Grant Nos: 42394114, 42174108, 42192535, 42242015), and the Young Top-notch Talent Cultivation Program of Hubei Province. The Project Supported by the Open Fund of Hubei Luojia Laboratory (No. 220100033). We are very thankful to the IERS and ECCO group for providing the EAMF data. We thank LetPub (https://www.letpub.com) for its linguistic assistance during the preparation of this manuscript. We are very thankful to all reviewers (especially Dr. Michael Schindelegger and Prof.Jose M Ferrandiz) for their remarks and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

CUI participated in the design of the study, carried out the data analysis, and drafted the manuscript. SUN, HOU and XU participated in the design of the study and the manuscript revision. LI, YANG, GONG and ZHOU participated in the data analysis. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiaoming Cui.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, X., Li, N., Gong, L. et al. Simulation analysis on resonance and direct approaches for determining free core nutation parameters with celestial pole offsets. J Geod 98, 26 (2024). https://doi.org/10.1007/s00190-024-01835-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00190-024-01835-4

Keywords

Navigation