Skip to main content
Log in

Relationship between free core nutation and geomagnetic jerks

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Recent studies have indicated a correlation between Earth’s free core nutation (FCN) and geomagnetic jerks (GMJs). However, some uncertainties still need to be resolved before their relationship can be confirmed. The variations in the amplitude and phase of the FCN result from the comprehensive influence of the surface fluid layer and core–mantle couplings, which makes its correlation with GMJs difficult to verify. The FCN period mainly depends on the inertia coupling and the dissipative couplings (such as viscous, electromagnetic and topographic couplings) at the core–mantle boundary according to the theory of Earth rotation. Whatever the GMJ mechanism, it is most likely to affect the FCN by changing the core–mantle couplings. This study was conducted to effectively determine variations in the FCN period by considering atmospheric and oceanic effects, investigate any correlation between the two phenomena, and analyze how the FCN relates to GMJs. Using the normal time–frequency transform, we extracted signals in the nutation band from the atmospheric and oceanic angular momentum functions. We used the broadband Liouville equations to estimate the atmospheric and oceanic effects on nutation terms. Using a sliding window of 2 years, we fitted five nutation terms most affected by FCN resonance from the celestial pole offsets with FCN model removed. The FCN period variation was estimated by using weighted least square method. The results indicated a correlation between the FCN and GMJ. Further, we analyzed the relationship between the geomagnetic fluctuations and FCN based on both the core–mantle couplings and the possible GMJ mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data will be provided upon reasonable request.

References

  • Belda S, Ferrándiz JM, Heinkelmann R et al (2016) Testing a new free core nutation empirical model. J Geodyn 94–95:59–67

    Article  Google Scholar 

  • Belda S, Heinkelmann R, Ferrandiz JM, Karbon M, Nilsson T, Schuh H (2017) An improved empirical harmonic model of the celestial intermediate pole offsets from a global VLBI solution. Astron J 154:166. https://doi.org/10.3847/1538-3881/aa8869

    Article  Google Scholar 

  • Bizouard C, Brzeziński A, Petrov S (1998) Diurnal atmospheric forcing and temporal variations of the nutation amplitudes. J Geod 72:561–577

    Article  Google Scholar 

  • Bizouard C, Lambert S, Gattano C, Becker O, Richard J (2019) The IERS EOP 14C04 solution for Earth orientation parameters consistent with ITRF 2014. J Geod 93:621–633. https://doi.org/10.1007/s00190-018-1186-3

    Article  Google Scholar 

  • Braginskiy SI (1970) Torsional magnetohydrodynamic vibrations in the Earth’s core and variations in day length. Geomagn Aeron 10:1–10

    Google Scholar 

  • Braginsky SI (1999) Dynamics of the stably stratified ocean at the top of the core. Phys Earth Planet Int 111:21–934

    Article  Google Scholar 

  • Brzeziński A (1994) Polar motion excitation by variations of the effective angular momentum function: II. Extended Model. Manuscr Geod 19:157–171

    Google Scholar 

  • Brzezinski A, Dobslaw H, Thomas M (2014) Atmospheric and oceanic excitation of the free core nutation estimated from recent geophysical models. Proceedings of the IAG 2011 scientific assembly “Earth on the edge: science for a sustainable planet”. In: Rizos C, Willis P (eds) IAG symposia, vol 139, pp 461–466. https://doi.org/10.1007/978-3-642-37222-361. Springer, Berlin

  • Chao BF (1985) On the excitation of the earth’s polar motion. Geophys Res Lett 12:526–529

    Article  Google Scholar 

  • Chao B, Hsieh Y (2015) The earths free core nutation: formulation of dynamics and estimation of eigenperiod from the very-long-baseline interferometry data. Earth Planet Sci Lett 36:483–492

    Article  Google Scholar 

  • Chen W, Shen WB (2010) New estimates of the inertia tensor and rotation of the triaxial nonrigid Earth. J Geophys Res 115:B12

    Article  Google Scholar 

  • Chulliat A, Maus S (2014) Geomagnetic secular acceleration, jerks, and a localized standing wave at the core surface from 2000 to 2010. J Geophys Res 119(3):1531–1543

    Article  Google Scholar 

  • Chulliat A, Thébault E, Hulot G (2010) Core field acceleration pulse as a common cause of the 2003 and 2007 geomagnetic jerks. Geophys Res Lett 37:L07301. https://doi.org/10.1029/2009GL042019

    Article  Google Scholar 

  • Chulliat A, Alken P, Maus S (2015) Fast equatorial waves propagating at the top of the Earth’s core. Geophys Res Lett 42(9):3321–3329

    Article  Google Scholar 

  • Cui X, Sun H, Rosat S, Xu J, Zhou J, Ducarme B (2014) Investigation of the time variability of diurnal tides and resonant FCN period. J Geodyn 79:30–38

    Article  Google Scholar 

  • Cui X, Sun H, Xu J, Zhou JC, Chen XD (2018a) Influence of core-mantle coupling on the excitation of free core nutation. Chin J Geophys CH 61(9):3584–3591

    Google Scholar 

  • Cui X, Sun H, Xu J, Zhou JC, Chen XD (2018b) Detection of free core nutation resonance variation in Earth tide from global superconducting gravimeter observations. Earth Planets Space 70:199

    Article  Google Scholar 

  • Dobslaw H, Dill R, Grotzsch A, Brzezinski A, Thomas M (2010) Seasonal polar motion excitation from numerical models of atmosphere, ocean, and continental hydrosphere. J Geophys Res 115:B10406. https://doi.org/10.1029/2009B007127

    Article  Google Scholar 

  • Duan P, Liu GY, Liu LT, Hu XG, Hao XG, Huang Y, Zhang ZM, Wang BB (2015) Recovery of the 6-year signal in length of day and its long-term decreasing trend. Earth Planets Space 67(1):161

    Article  Google Scholar 

  • Finlay CC, Dumberry M, Chulliat A et al (2010) Short timescale core dynamics: theory. Space Sci Rev 155(1–4):177–218

    Article  Google Scholar 

  • Finlay CC, Olsen N, Kotsiaros S, Gillet N, Tøffner-Clausen L (2016) Recent geomagnetic secular variation from Swarm and ground observatories in the CHAOS-6 geomagnetic field model. Earth Planets Space 68(1):112. https://doi.org/10.1186/s40623-016-0486-1

    Article  Google Scholar 

  • Gattano C, Lambert S, Bizouard C (2016) Observation of the Earth’s nutation by the VLBI: how accurate is the geophysical signal. J Geod 91:1–8. https://doi.org/10.1007/s00190-016-0940-7

    Article  Google Scholar 

  • Gillet N, Jault D, Canet E, Fournier A (2010) Fast torsional waves and strong magnetic field within the Earth’s core. Nature 465:74–77

    Article  Google Scholar 

  • Golovkov VP, Yakovleva SV (2006) Electric conductivity of the lower mantle: methods and results. Geomagn Aeron 46:676–681

    Article  Google Scholar 

  • Herring TA, Gwinn CR, Shapiro II (1986) Geodesy by radio interferometry: studies of the forced nutations of the Earth 1. Data analysis. J Geophys Res 91:4745–4754

    Article  Google Scholar 

  • Hinderer J, Legros H, Amalvict M (1982) A search for Chandler and nearly diurnal free wobble using Liouville equations. Geophys J R AstrSoc 71:303–332

    Article  Google Scholar 

  • Hinderer J, Boy JP, Gegout P, Defraigne P, Roosbeek F, Dehant V (2000) Are the free core nutation parameters variable in time? Phys Earth Planet Int 117:37–49

    Article  Google Scholar 

  • Kaneshima S, Matsuzawa T (2015) Stratification of earth’s outermost core inferred from SmKS array data. Prog Earth Planet Sc 2(1):15

    Article  Google Scholar 

  • Koot L, Viron OD (2011) Atmospheric contributions to nutations and implications for the estimation of deep Earth’s properties from nutation observations. Geophys J Int 185(3):1255–1265

    Article  Google Scholar 

  • Krásná H, Böhm J, Schuh H (2013) Free core nutation observed by VLBI. Astron Astrophys 555(1):A29

    Article  Google Scholar 

  • Lambert S (2007) Empirical model of the Free Core Nutation. Technical note. http://syrte.obspm.fr/

  • Lambert S, Dehant V (2007) The Earth’s core parameters as seen by the VLBI. Astron Astrophys 469(2):777–781

    Article  Google Scholar 

  • Liu LT, Hsu H (2012) Inversion and normalization of time-frequency transform. Appl Math Inf Sci 6(1):67–74

    Google Scholar 

  • Malkin Z (2007) Empiric models of the Earth’s free core nutation. Solar Syst Res 41(6):492–497

    Article  Google Scholar 

  • Malkin Z (2013) Free core nutation and geomagnetic jerks. J Geodyn 72:53–58. https://doi.org/10.1016/j.jog.2013.06.001

    Article  Google Scholar 

  • Malkin Z (2014) On the accuracy of the theory of precession and nutation. Astron Rep 58:415–425. https://doi.org/10.1134/S1063772914060043

    Article  Google Scholar 

  • Malkin Z (2016) Free core nutation: new large disturbance and connection evidence with geomagnetic jerks. Acta Geodyn Geomater 13(181):41–45. https://doi.org/10.13168/AGG.2015.0042

    Article  Google Scholar 

  • Mandea M, Holme R, Pais A, Pinheiro K, Jackson A, Verbanac G (2010) Geomagnetic jerks: Rapid core field variations and core dynamics. Space Sci Rev 155:147–175. https://doi.org/10.1007/s11214-010-9663-x

    Article  Google Scholar 

  • Mathews PM, Guo JY (2005) Viscoelectromagnetic coupling in precession-nutation theory. J Geophys Res 110:B02402. https://doi.org/10.1029/2003JB002915

    Article  Google Scholar 

  • Mathews PM, Herring TA, Buffett BA (2002) Modeling of nutation and precession: new nutation series for nonrigid Earth and insights into the Earth’s interior. J Geophys Res 107:539–554

    Article  Google Scholar 

  • Michelis P, Tozzi R, Meloni A (2005) Geomagnetic jerks: observation and theoretical modeling. Mem Della Soc Astron Ital 76:957

    Google Scholar 

  • Neuberg J, Hinderer J, Zurn W (1987) Stacking gravity tide observations in central Europe for the retrieval of the complex eigenfrequency of the nearly diurnal free wobble. Geophy J R astr Soc 91:853–868

    Article  Google Scholar 

  • Olsen N, Mandea M (2007) Investigation of a secular variation impulse using satellite data: the 2003 geomagnetic jerk. Earth Planet Sci Lett 255:94–105. https://doi.org/10.1016/j.epsl.2006.12.008

    Article  Google Scholar 

  • Petit G, Luzum B (2010) IERS conventions (2010), IERS technical note, 36, Bundesamts für Kartogr. und Geod., Frankfurt, Germany

  • Petrov L (2007) The empirical Earth rotation model from VLBI observations. Astron Astrophys 467:359–369

    Article  Google Scholar 

  • Qamili E, De Santis A, Isac A, Mandea M, Duka B, Simonyan A (2013) Geomagnetic jerks as chaotic fluctuations of the Earth’s magnetic field. Geochem Geophys Geosynth 14(4):839–850

    Article  Google Scholar 

  • Roosbeek F, Defraigne P, Fessel M, Dehant V (1999) The free core nutation period stays between 431 and 434 sidereal days. Geophys Res Lett 26:131–134

    Article  Google Scholar 

  • Rosat S, Lambert SB (2009) Free core nutation resonance parameters from VLBI and superconducting gravimeter data. Astron Astrophys 503:287–291

    Article  Google Scholar 

  • Sabaka TJ, Olsen N, Purucker ME (2004) Extending comprehensive models of the earth’s magnetic field with Ørsted and CHAMP data. Geophys J Int 159:521–547

    Article  Google Scholar 

  • Sasao T, Wahr JM (1981) An excitation mechanism for the free core nutation. Geophys J R Astron Soc 64:729–746

    Article  Google Scholar 

  • Shirai T, Fukushima T, Malkin Z (2005) Detection of phase disturbances of free core nutation of the Earth and their concurrence with geomagnetic jerks. Earth Planets Space 57:151–155

    Article  Google Scholar 

  • Su X, Liu L, Houtse H, Wang G (2014) Long-term polar motion prediction using normal time–frequency transform. J Geod 88:145–155

    Article  Google Scholar 

  • Torta JM, Pavón-Carrasco FJ, Marsal S, Finlay CC (2015) Evidence for a new geomagnetic jerk in 2014. Geophys Res Lett 42(19):7933–7940

    Article  Google Scholar 

  • Vondrák J, Ron C (2009) Stability of period and quality factor of free core nutation. Acta Geodyn Geomater 6(3):217–224

    Google Scholar 

  • Vondrák J, Ron C (2015) Earth orientation and its excitations by atmosphere, oceans, and geomagnetic jerks. Serb Astron J 191:59–66

    Article  Google Scholar 

  • Vondrák J, Ron C (2017) New method for determining free core nutation parameters, considering geophysical effects. Astron Astrophys 604:A56

    Article  Google Scholar 

  • Wallace PT, Capitaine N (2006) Precession-nutation procedures consistent with IAU 2006 resolutions. Astron Astrophys 459:981–985

    Article  Google Scholar 

  • Zhou H (1988) Detect of nearly diurnal resonance of liquid core. A dissertation for master degree. Institute of Geodesy and Geophysics, Chinese Academy of Science, Wuhan

    Google Scholar 

  • Zhou YH, Zhu Q, Salstein D (2016) Estimation of the free core nutation period by the sliding-window complex least-squares fit method. Adv Space Res 57(10):2136–2140

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (973 Program) (2014CB845902) and National Natural Science Foundation of China (41774092, 41621091, 41321063, 41274085, 41304058, 41374084 and 41574072). We are very thankful to the IERS and the International VLBI Service for Geodesy and Astrometry for providing the EAMF and VLBI data. We would like to thank Editage (www.editage.cn) for English language editing. Also we are very thankful to Editor and three anonymous reviewers for their remarks and suggestions which were helpful in preparing the revised version.

Author information

Authors and Affiliations

Authors

Contributions

CUI participated in the design of the study, carried out the data analysis, and drafted the manuscript. SUN and XU participated in the design of the study. ZHOU and CHEN carried out part of data analysis. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiaoming Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, X., Sun, H., Xu, J. et al. Relationship between free core nutation and geomagnetic jerks. J Geod 94, 38 (2020). https://doi.org/10.1007/s00190-020-01367-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00190-020-01367-7

Keywords

Navigation