Skip to main content
Log in

Inertial modes of an Earth model with a compressible fluid core and elastic mantle and inner core

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

We use the linear momentum description (LMD) of the dynamics of the Earth in order to investigate the effects of mantle and inner core elasticity on the frequencies of some of the inertial modes of a spherical Earth model with a liquid core. Traditionally, a liquid core with rigid boundaries is considered to study these modes. A Galerkin method is applied to solve the linear momentum and the Poisson’s equations with the relevant boundary conditions at the interfaces. To test the validity of our method, we compute the periods of some of the Earth’s other normal modes such as the Slichter modes and the spheroidal modes and compare the results with the predicted and observed (when available) values in the literature. We show that the computed dimensionless frequencies [\(\omega /(2\varOmega \))] of the inertial modes may be significantly affected by the elasticity of the mantle and inner core. For example, the frequencies of the (2,1,1), also known as the spin-over mode (SOM), (4,1,1), (4,2,1) and (4,3,1) modes are changed from 0.5000, \(- 0.4100\), 0.3060 and 0.8540 for a Poincaré model to 0.4995, \(- 0.4208\), 0.3150 and 0.8587, respectively. The change in the frequency of the SOM may seem small, but it is consistent with the change in the frequency of the free-core nutation, which is the same mode as the SOM of a wobbling Earth, which changes from \(\approx 0.50144\) for an Earth model with rigid mantle and inner core to \(\approx 0.50116\) for an elastic Earth model. We will show that a great advantage of this method is that we ensure that the frequencies are converged and that it may be generalized to solve other problems in geodynamics including the study of the Earth’s free and forced nutation/wobble.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Attar D, Tromp J (2014) Sensitivity kernels for viscoelastic loading based on adjoint methods. Geophys J Int 196:34–77

    Google Scholar 

  • Al-Attar D, Woodhouse J, Deuss A (2012) Calculation of normal mode spectra in laterally heterogeneous earth models using an iterative direct solution method. Geophys J Int 189:1028–1046

    Google Scholar 

  • Aldridge KD (1972) Axisymmetric inertial oscillations of a fluid in a rotating spherical shell. Mathematika 19:163–168

    Google Scholar 

  • Alterman A, Jarosch H, Pekeris CL (1959) Oscillations of the Earth. Proc Soc Lond A 252:80–95

    Google Scholar 

  • Alterman ZS, Eyal Y, Merzer AM (1974) On free oscillations of the earth. Geophys Surv 1(4):409–428

    Google Scholar 

  • Backus G, Rieutor M (2017) Completeness of inertial modes of an incompressible inviscid fluid in a corotating ellipsoid. Phys Rev E 95:053116

    Google Scholar 

  • Benioff H, Press F, Smith S (1961) Excitation of the free oscillations of the Earth by earthquakes. J Geophys Res 66:605–619

    Google Scholar 

  • Bryan GH (1889) The waves on a rotating liquid spheroid of finite ellipticity. Philos Trans R Soc Lond A Math Phys Eng Sci 180:187–219. https://doi.org/10.1098/rsta.1889.0006

    Article  Google Scholar 

  • Crossley DJ, Rochester MG (2014) A new description of Earth’s wobble modes using Clairaut coordinates: 2. Results and inferences on the core mode spectrum. Geophys J Int 198(3):1878–1893

    Google Scholar 

  • Crossley DJ, Rochester MG, Peng Z (1992) Slichter modes and love numbers. Geophys Res Lett 19:1679–1682

    Google Scholar 

  • Dahlen FA, Tromp J (1998) Theoretical global seismology. Chapter 8: Toroidal and spheroidal oscillations. Princeton University Press, Princeton

    Google Scholar 

  • de Vries D, Wahr JM (1991) The effects of the solid inner core and nonhydrostatic structure on the Earth’s forced nutations and Earth tides. J Geophys Res 96(B5):8275–8293

    Google Scholar 

  • Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Int 25:297–356

    Google Scholar 

  • Friedlander S (1985) Internal oscillations in the Earth’s fluid core. Geophys J Int 80:345–361

    Google Scholar 

  • Gilbert F (1970) Excitation of the normal modes of the Earth by earthquake sources. Geophys J R Astron Soc 22:223–226

    Google Scholar 

  • Greenspan HP (1968) The theory of rotating fluids. Cambridge University Press

  • Hough SS (1895) The oscillations of a rotating ellipsoidal shell containing fluid. Philos Trans R Soc Lond A Math Phys Eng Sci 186:469–506. https://doi.org/10.1098/rsta.1895.0012

    Article  Google Scholar 

  • Ishii M, Tromp J (1999) Normal-mode and free-air gravity constraints on lateral variations in velocity and density of Earth’s mantle. Science 285:1231–1236

    Google Scholar 

  • Ivers D (2017a) Enumeration, orthogonality and completeness of the incompressible Coriolis modes in a tri-axial ellipsoid. Geophys Astrophys Fluid Dyn 111:333–354

    Google Scholar 

  • Ivers D (2017b) Tilted incompressible Coriolis modes in spheroids. J Fluid Mech 833:131–163

    Google Scholar 

  • Ivers D, Jackson A, Winch D (2015) Enumeration, orthogonality and completeness of the incompressible Coriolis modes in a sphere. J Fluid Mech 766:468–498

    Google Scholar 

  • Kamruzzaman M (2015) Inertial modes of the Earth’s fluid core. Master’s thesis, The University of Lethbridge, AB, Canada

  • Kelvin L (1880) Vibrations of a columnar vortex. Philos Mag 10:155–168

    Google Scholar 

  • Kudlick MD (1966) On transient motions in a contained. Rotating fluid. Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  • Masters G, Johnson S, Laske G, Bolton H (1996) A shear-velocity model of the mantle. Philos Trans R Soc Lond A 354:1385–1411

    Google Scholar 

  • Mathews PM, Buffett BA, Herring TA, Shapiro II (1991) Forced nutations of the Earth: influence of the inner core dynamics, 2: numerical results. J Geophys Res Solid Earth 96(B5):8243–8257. https://doi.org/10.1029/90JB01955

    Article  Google Scholar 

  • Okal EA, Stein S (2009) Observations of ultra-long period normal modes from the 2004 Sumatra–Andaman earthquake. Phys Earth Planet Inter 175:53–62

    Google Scholar 

  • Poincaré H (1910) Sur la précession des corps déformables. Bull Astron Ser I 27:321–356

    Google Scholar 

  • Rieutord M (1991) Linear theory of rotating fluids using spherical harmonics part II, time-periodic flows. Geophys Astrophys Fluid Dyn 59(1–4):185–208

    Google Scholar 

  • Rieutord M (1995) Inertial modes in the liquid core of the Earth. Phys Earth Planet Inter 91(1–3):41–46

    Google Scholar 

  • Rieutord M, Valdettaro L (1997) Inertial waves in a rotating spherical shell. J Fluid Mech 341:77–99

    Google Scholar 

  • Rochester MG, Crossley DJ, Zhang YL (2014) A new description of earth’s wobble modes using clairaut coordinates: 1. Theory. Geophys J Int 198(3):1848–1877

    Google Scholar 

  • Rogister Y, Valette B (2009) Influence of liquid core dynamics on rotational modes. Geophys J Int 176:368–388

    Google Scholar 

  • Seyed-Mahmoud B (1994) Wobble/nutation of a rotating ellipsoidal earth with liquid outer core: implementation of a new set of equations describing dynamics of rotating fluids. Master’s thesis. Memorial University of Newfoundland, Canada

  • Seyed-Mahmoud B, Rochester M (2006) Dynamics of rotating fluids described by scalar potentials. Phys Earth Planet Inter 156(1–2):143–151

    Google Scholar 

  • Seyed-Mahmoud B, Heikoop J, Seyed-Mahmoud R (2007) Inertial modes of a compressible fluid core model. Geophys Astrophys Fluid Dyn 101(5–6):489–505

    Google Scholar 

  • Seyed-Mahmoud B, Moradi A, Kamruzzaman M, Naseri H (2015) Effects of density stratification on the frequencies of the inertial modes of the Earth’s fluid core. Geophys J Int 202(2):1146–1157

    Google Scholar 

  • Seyed-Mahmoud B, Rochester MG, Rogers CM (2017) Truncation effects in computing free wobble/nutation modes explored using a simple Earth model. Geophys J Int 209:1455–1461

    Google Scholar 

  • Slichter LB (1961) The fundamental free mode of the Earth’s inner core. Proc Natl Acad Sci USA 47:186–190

    Google Scholar 

  • Smith ML (1974) The scalar equations of infinitesimal elastic-gravitational motion for a rotating, slightly elliptical Earth. Geophys J R Astron Soc 37(3):491–526

    Google Scholar 

  • Stewartson K, Rickard JA (1969) Pathological oscillations of a rotating fluid. J Fluid Mech 35:759–773

    Google Scholar 

  • Su W, Woodward RL, Dziewonski A (1994) Degree 12 model of shear velocity heterogeneity in the mantle. J Geophys Res Solid Earth 99:6945–6980

    Google Scholar 

  • Vantieghem S (2014) Inertial modes in a rotating tri-axial ellipsoid. Proc R Soc A 470:20140093

    Google Scholar 

  • Vasco DW (1995) A transformational approach to geophysical inverse problems. Geophys J Int 123:183–212

    Google Scholar 

  • Webb SC (2008) The Earth’s hum: the excitation of Earth normal modes by ocean waves. Geophys J Int 174:542–566

    Google Scholar 

  • Wu WJ, Rochester MG (1994) Gravity and Slichter modes of the rotating Earth. Phys Earth Planet Inter 87:137–154

    Google Scholar 

  • Zhang K, Liao X, Earnshaw P (2004) On inertial waves and oscillations in a rapidly rotating spheroid. J Fluid Mech 504:1–40

    Google Scholar 

  • Zhang M, Huang C (2019) The effect of the differential rotation of the Earth inner core on the free core nutation. Geodesy Geodyn 10:146–149

    Google Scholar 

  • Zhong S, Liu X (2016) The long-wavelength mantle structure and dynamics and implications for large-scale tectonics and volcanism in the phanerozoic. Gondwana Res 29:83–104

    Google Scholar 

Download references

Acknowledgements

We are grateful to the School of Graduate Studies and the Faculty of Arts and Science at the University of Lethbridge, and the University of Lethbridge Research Fund, ULRF, for providing funding for this research. We are also grateful to three anonymous reviewers whose comments helped greatly improve the quality of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behnam Seyed-Mahmoud.

Appendices

Appendix A: Galerkin method

In this section, following Seyed-Mahmoud (1994) and Kamruzzaman (2015), we introduce the Galerkin method applicable to a system of simultaneous partial differential equations subject to boundary conditions. This method is a tool to approximate the solution of an operator equation in the form of a linear combination of the elements of a linearly independent system. This method was used to the 3PD (Seyed-Mahmoud and Rochester 2006) for studying the inertial modes of a compressible and stratified fluid core with rigid boundaries (Seyed-Mahmoud et al. 2007, 2015; Kamruzzaman 2015), and the free wobble/nutation modes of a simple Earth model with a rotating, inviscid, homogeneous and incompressible fluid core contained in a spherical shell with rigid boundaries (Seyed-Mahmoud et al. 2017), and the effect of the Earth’s differential rotation of the inner core on the period of the FCN (Zhang and Huang 2019).

Following Seyed-Mahmoud (1994) and Kamruzzaman (2015), we consider a set of functions \(X=(X_1, X_2,\)\( X_3, \ldots , X_N)\) which satisfies a set of simultaneous PDEs in a region V,

$$\begin{aligned} \sum _{j=1}^N L_{ij} X_j= 0 \end{aligned}$$
(A.1)

for every i\((i=1, \ldots , N)\), where \(L_{ij}\) are linear (maybe complex) partial differential operators.

Suppose that there are a number of associated boundary conditions satisfied on the boundary S of volume V, such that

$$\begin{aligned} \sum _{j=1}^N B_{ij} X_j= 0 \end{aligned}$$
(A.2)

for every i\((i=1, \ldots , N)\), where \(B_{ij}\) are linear operators. Using a basis set \(f_l\), \(l=1, \ldots , L\), we introduce trial functions

$$\begin{aligned} X_j=\sum _{l=1}^L C_{jl} f_l \end{aligned}$$
(A.3)

for every j\( (j=1, \ldots , N)\), which need not a priori satisfy the boundary conditions. The Galerkin method tries to make \(\sum _{j} L_{ij}X_j\) as nearly null as possible by requiring

$$\begin{aligned} \sum _{j=1}^N \sum _{l=1}^L \int _V f_l^* L_{ij}C_{jl} f_l \mathrm{d}V =0, \end{aligned}$$
(A.4)

where \(l=1, \ldots , L\), and \( ^*\) denotes the complex conjugate.

In general the trial functions do not a priori satisfy the boundary conditions. We choose a set of basis functions \(\psi _l\) (i.e., weight functions) equal in number to the basis functions defined in the trial functions \(X_j\) used to reconstruct in Eq. (A.4) as

$$\begin{aligned} \sum _{j=1}^N \sum _{l=1}^L\left[ \int _V f_l^* L_{ij}C_{jl} f_l \mathrm{d}V + \int _\mathrm{s} \psi _l^* B_{ij}C_{jl} f_l \mathrm{d}S\right] =0. \end{aligned}$$
(A.5)

Appendix B: Derivation of the weak form of the dynamical equations

Recall that Eq. (32):

$$\begin{aligned} F_{1k}= & {} \int _{V_k} {\mathbf{u}}^*_k\cdot \bigg [ \sigma ^2{\mathbf{u}}_k -i\sigma \hat{\mathbf{e}}_3\times {\mathbf{u}}_k-{\mathbf{g}}_0 \nabla \cdot {\mathbf{u}}_k \nonumber \\&+\nabla ({\mathbf{u}}_k\cdot {\mathbf{g}}_0+(V_1)_k)+\frac{1}{\rho _0}\nabla \cdot ({\tilde{\tau }})_k \bigg ]\mathrm{d}V. \end{aligned}$$
(B.1)

Using the identity \(\nabla \cdot (f{\mathbf{A}})= f\nabla \cdot {\mathbf{A}}+{\mathbf{A}}\cdot \nabla f\) on the 4th term of the right-hand side of Eq. (B.1) and applying the divergence theorem, we find

$$\begin{aligned}&\int _{V_k} {\mathbf{u}}^*_k\cdot \nabla ({\mathbf{u}}_k\cdot {\mathbf{g}}_0 +(V_1)_k)\mathrm{d}V=-\int _{V_k}{(\nabla \cdot \mathbf{u}}^*_k)\{{\mathbf{u}}_k\cdot {\mathbf{g}}_0 \nonumber \\&\quad +(V_1)_k\} \mathrm{d}V +\int _{S_k}({\hat{\mathbf{n}}}\cdot {\mathbf{u}}^*_k)\{{\mathbf{u}}_k\cdot {\mathbf{g}}_0+(V_1)_k\}\mathrm{d}S \end{aligned}$$
(B.2)

Now, using Eq. (7) on the last term of the right-hand side of Eq. (B.1);

$$\begin{aligned}&\int _{V_k}\frac{1}{\rho _0}\nabla \cdot ({\tilde{\tau }})_k \cdot {\mathbf{u}}^*_k \mathrm{d}V\nonumber \\&\quad =\int _{V_k} \frac{1}{\rho _0}[\nabla \cdot \{{({\tilde{\tau }}_1)}_k+ {({\tilde{\tau }}_2)}_k\}]\cdot {\mathbf{u}}^*_k\mathrm{d}V. \end{aligned}$$
(B.3)

Note that the two terms of the right-hand side of Eq. (B.3) are almost identical to the first two terms of equation (2.52) in Al-Attar and Tromp (2014). However, the term, \(1/\rho _0\), is not appeared in their case. We expand the 1st term of the right-hand side of the above equation as follows:

$$\begin{aligned} \nabla \cdot \left( \frac{1}{\rho _0}{({\tilde{\tau }}_1)}_k\cdot {\mathbf{u}}^*_k\right)= & {} \frac{1}{\rho _0}\nabla \cdot ({({\tilde{\tau }}_1)}_k\cdot {\mathbf{u}}^*_k)-\frac{\nabla \rho _0}{\rho _0^2}\cdot ({{\tilde{\tau }}_1)}_k\cdot {\mathbf{u}}^*_k \nonumber \\= & {} \frac{1}{\rho _0}\big [ (\nabla \cdot {({\tilde{\tau }}_1)}_k)\cdot {\mathbf{u}}^*_k+({{\tilde{\tau }}_1)}_k:\nabla {\mathbf{u}}^*_k\big ]\nonumber \\&-\frac{\nabla \rho _0}{\rho _0^2}\cdot ({{\tilde{\tau }}_1)}_k\cdot {\mathbf{u}}^*_k \end{aligned}$$
(B.4)

Therefore

$$\begin{aligned} \int _{V_k}\frac{1}{\rho _0}\nabla \cdot ({\tilde{\tau }}_1)_k \cdot {\mathbf{u}}^*_k \mathrm{d}V=\int _{V_k}\bigg [\frac{\nabla \rho _0}{\rho _0^2}\cdot ({\tilde{\tau }}_1)_k\cdot {\mathbf{u}}^*_k\nonumber \\ -\frac{1}{\rho _0}({\tilde{\tau }}_1)_k:\nabla {\mathbf{u}}^*_k \bigg ]\mathrm{d}V +\int _{S_k}\frac{1}{\rho _0}{\hat{\mathbf{n}}}\cdot ({\tilde{\tau }}_1)_k\cdot {\mathbf{u}}^*_k \mathrm{d}S \end{aligned}$$
(B.5)

Similar way, we can expand the 2nd term of the right-hand side of (B.3). However, the term \(({\tilde{\tau }}_2)_k:\nabla {\mathbf{u}}^*_k \) leads the coefficient of \(1/\sin ^2\theta \) terms which present a challenge to integrate numerically. In order to bypass this difficulty, we have integrated the 2nd term of the right-hand side of (B.3) directly and have included the associated boundary condition of this term the following Eq. (A.5). The r, \(\theta \) and \(\phi \) components of \(\nabla \cdot {({\tilde{\tau }}_2)}_k\) in the spherical coordinate system are given by

$$\begin{aligned} \big \{\nabla \cdot {(\tilde{\varvec{\tau }}_2)}_k\big \}_r= & {} \frac{\partial {({\varvec{\tau }}_2)}_{rr}}{\partial r}+\frac{1}{r}\frac{\partial {({\varvec{\tau }}_2)}_{\theta r}}{\partial \theta }+\frac{1}{r\sin \theta }\frac{\partial {({\varvec{\tau }}_2)}_{\phi r}}{\partial \phi }\nonumber \\&+\frac{2{({\varvec{\tau }}_2)}_{rr}-{({\varvec{\tau }}_2)}_{\theta \theta }-{({\varvec{\tau }}_2)}_{\phi \phi }}{r}+\frac{\cot \theta }{r}{({\varvec{\tau }}_2)}_{\theta r}, \end{aligned}$$
(B.6)
$$\begin{aligned} \big \{\nabla \cdot {(\tilde{\varvec{\tau }}_2)}_k\big \}_\theta= & {} \frac{\partial {({\varvec{\tau }}_2)}_{r\theta }}{\partial r}+\frac{1}{r}\frac{\partial {({\varvec{\tau }}_2)}_{\theta \theta }}{\partial \theta }+\frac{1}{r\sin \theta }\frac{\partial {({\varvec{\tau }}_2)}_{\phi \theta }}{\partial \phi }\nonumber \\&+\frac{3{({\varvec{\tau }}_2)}_{r\theta }}{r}+\frac{\cot \theta }{r}\big \{{({\varvec{\tau }}_2)}_{\theta \theta }-{({\varvec{\tau }}_2)}_{\phi \phi }\big \}, \end{aligned}$$
(B.7)
$$\begin{aligned} \big \{\nabla \cdot {(\tilde{\varvec{\tau }}_2)}_k\big \}_\phi= & {} \frac{\partial {({\varvec{\tau }}_2)}_{r\phi }}{\partial r}+\frac{1}{r}\frac{\partial {({\varvec{\tau }}_2)}_{\theta \phi }}{\partial \theta }+\frac{1}{r\sin \theta }\frac{\partial {({\varvec{\tau }}_2)}_{\phi \phi }}{\partial \phi }\nonumber \\&+\frac{3{({\varvec{\tau }}_2)}_{r\phi }}{r}+\frac{2\cot \theta }{r}{({\varvec{\tau }}_2)}_{\theta \phi }, \end{aligned}$$
(B.8)

where

$$\begin{aligned}&{\begin{matrix} ({{\varvec{\tau }}_2)}_{rr}=2\mu e_{rr} ; \ \ ({{\varvec{\tau }}_2)}_{\theta \theta }=2\mu e_{\theta \theta }; \ \ ({{\varvec{\tau }}_2)}_{\phi \phi }=2\mu e_{\phi \phi }; \end{matrix}} \end{aligned}$$
(B.9)
$$\begin{aligned}&{\begin{matrix} ({{\varvec{\tau }}_2)}_{r\theta }=2\mu e_{r\theta } ; \ \ ({{\varvec{\tau }}_2)}_{\theta \phi }=2\mu e_{\theta \phi }; \ \ ({{\varvec{\tau }}_2)}_{\phi r}=2\mu e_{\phi r}. \end{matrix}}\nonumber \\ \end{aligned}$$
(B.10)

In the above Eqs. (B.9) and (B.10):

$$\begin{aligned} e_{ee}= & {} \frac{\partial u_r}{\partial r}, \end{aligned}$$
(B.11)
$$\begin{aligned} e_{\theta \theta }= & {} \frac{u_r}{r}+\frac{1}{r}\frac{\partial u_\theta }{\partial \theta }, \end{aligned}$$
(B.12)
$$\begin{aligned} e_{\phi \phi }= & {} \frac{1}{r\sin \theta }\frac{\partial u_\phi }{\partial \phi }+\frac{u_r}{r}+\frac{\cot \theta u_\theta }{r}, \end{aligned}$$
(B.13)
$$\begin{aligned} 2e_{r\theta }= & {} \frac{\partial u_\theta }{\partial r}-\frac{u_\theta }{r}+\frac{1}{r}\frac{\partial u_r}{\partial \theta }, \end{aligned}$$
(B.14)
$$\begin{aligned} 2e_{\theta \phi }= & {} \frac{1}{r}\frac{\partial u_\phi }{\partial \theta }-\frac{\cot \theta u_\phi }{r}+\frac{1}{r\sin \theta }\frac{\partial u_\theta }{\partial \phi }, \end{aligned}$$
(B.15)
$$\begin{aligned} 2e_{\phi r}= & {} \frac{\partial u_\phi }{\partial r}-\frac{u_\phi }{r}+\frac{1}{r\sin \theta }\frac{\partial u_r}{\partial \phi }, \end{aligned}$$
(B.16)

where \(u_r\), \(u_\theta \) and \(u_\phi \), which are given from Eq. (12), are the radial, \(\theta \) and \(\phi \) components of the displacement \({\mathbf{u}}\), respectively. Note that \(e_{r\theta }=e_{\theta r}\), \(e_{\theta \phi }=e_{\phi \theta }\), and \(e_{\phi r}=e_{r\phi }\) because the stress tensor is a symmetric tensor.

Again, recall that Eq. (33):

$$\begin{aligned} F_{2k}= & {} \int _{V_k} (V^*_1)_k \bigg [\nabla ^2(V_1)_k-4\pi G\nabla \cdot (\rho _0{\mathbf{u}}_k) \bigg ]\mathrm{d}V,\nonumber \\= & {} \int _{V_k} (V^*_1)_k \nabla \cdot \bigg [\nabla (V_1)_k-4\pi G(\rho _0{\mathbf{u}}_k) \bigg ]\mathrm{d}V. \end{aligned}$$
(B.17)

Using the identity \(\nabla \cdot (f{\mathbf{A}})= f\nabla \cdot {\mathbf{A}}+{\mathbf{A}}\cdot \nabla f\) on the above equations, and applying the divergence theorem, we find

$$\begin{aligned} F_{2k}= & {} \int _{S_k}(V^*_1)_k{\hat{\mathbf{n}}}\cdot \{\nabla (V_1)_k-4\pi G\rho _0{\mathbf{u}}_k\}\mathrm{d}S \nonumber \\&-\int _{V_k}\bigg [\nabla (V_1)_k-4\pi G\rho _0{\mathbf{u}}_k \bigg ]\cdot \nabla (V^*_1)_k \mathrm{d}V. \end{aligned}$$
(B.18)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamruzzaman, M., Seyed-Mahmoud, B. Inertial modes of an Earth model with a compressible fluid core and elastic mantle and inner core. J Geod 94, 4 (2020). https://doi.org/10.1007/s00190-019-01329-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00190-019-01329-8

Keywords

Navigation