Skip to main content

Advertisement

Log in

Soft clustering of GPS velocities from a homogeneous permanent network in Turkey

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Global positioning system (GPS) velocities have long and widely been used on various scales in revealing the deformations of the continental lithosphere. We present a homogeneous geodetic velocity field with high precision derived from ~ 10-year-long permanent GPS observations throughout Turkey. Without any apriori information or assumption, the cluster analysis might be applied upon the velocity fields for inspection, before going further in the analyses used prevalently in tectonic studies. We first “hard clustered” the velocities using k-means, hierarchical agglomerative clustering and Gaussian mixture models and examined how the cluster assignments change by tuning the algorithm-specific parameters. The Eurasian and the Arabian blocks which are separated from the Anatolian block with the strike-slip North and East Anatolian faults have been detected immediately. The Anatolian block itself has been divided into three blocks where the cluster assignments of the velocities at the transition zones might differ according to the chosen hard clustering algorithm. We then applied soft clustering using an appropriate Gaussian mixture model fit and created a probability map exhibiting the credibility of the cluster assignments. The detection capability of the cluster analysis has been demonstrated by comparison to various previously published block models of western Turkey. Cluster analysis detected the most pronounced blocks in western Turkey successfully, especially when the initially chosen number of clusters is not too large. The probability map of soft clustering can be used to modify the block boundaries together with the external validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Aktug B et al (2009) Deformation of western Turkey from a combination of permanent and campaign GPS data: limits to block-like behavior. J Geophys Res Solid Earth 114(10):1–22. https://doi.org/10.1029/2008JB006000

    Article  Google Scholar 

  • Aktug B, Parmaksiz E, Kurt M, Lenk O, Kilicoglu A, Gurdal MA, Ozdemir S (2013) Deformation of central anatolia: GPS implications. J Geodyn 67:78–96. https://doi.org/10.1016/j.jog.2012.05.008

    Article  Google Scholar 

  • Aktug B et al (2016) Slip rates and seismic potential on the East Anatolian Fault System using an improved GPS velocity field. J Geodyn 94–95:1–12. https://doi.org/10.1016/j.jog.2016.01.001

    Article  Google Scholar 

  • Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geodesy 85(8):457–473. https://doi.org/10.1007/s00190-011-0444-4

    Article  Google Scholar 

  • Altamimi Z, Métivier L, Collilieux X (2012) ITRF2008 plate motion model. J Geophys Res Solid Earth 117(7):1–14. https://doi.org/10.1029/2011JB008930

    Article  Google Scholar 

  • Arthur D, Vassilvitskii S (2007) K-means ++: the advantages of careful seeding. In: Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms, vol 8, pp 1027–1025. https://doi.org/10.1145/1283383.1283494

  • Ayhan M E, et al (2002) Turkish National Fundamental GPS Network—1999A (TUTGA-99A). Mapping Journal Special Issue 16, General Directorate of Mapping, Ankara. (in Turkish)

  • Blewitt G, Lavallée D (2002) Effect of annual signals on geodetic velocity. J Geophys Res 107(B7):2145. https://doi.org/10.1029/2001JB000570

    Article  Google Scholar 

  • Boehm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res Solid Earth 111(2):1–9. https://doi.org/10.1029/2005JB003629

    Article  Google Scholar 

  • Calinski T, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat 3(1):1–27

    Google Scholar 

  • Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell PAMI-1(2):224–227

    Article  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B Methodol 39(1):1–38. https://doi.org/10.2307/2984875

    Article  Google Scholar 

  • Dong D, Herring TA, King RW (1998) Estimating regional deformation from a combination of space and terrestrial geodetic data. J Geodesy 72(4):200–214. https://doi.org/10.1007/s001900050161

    Article  Google Scholar 

  • Driver HE, Kroeber AL (1932) Quantitative expression of cultural relationships, vol 31. University of California Publications in American Archaeology and Ethnology, Berkeley, pp 211–256

    Google Scholar 

  • Emre O, Duman T Y, Ozalp S, Elmaci H, Olgun S, Saroglu F (2013) Active fault map of Turkey with and explanatory text. General Directorate of Mineral Research and Exploration, Special Publication Series-30. Ankara

  • Ergintav S, Burgmann R, McClusky S, Çakmak R, Reilinger RE, Lenk O, Barka A, Ozener H (2002) Postseismic deformation near the İzmit earthquake (17 August 1999, M 7.5) rupture zone. Bull Seismol Soc Am 92(1):194–207. https://doi.org/10.1785/0120000836

    Article  Google Scholar 

  • Flerit F, Armijo R, King GCP, Meyer B, Barka A (2003) Slip partitioning in the Sea of Marmara pull-apart determined from GPS velocity vectors. Geophys J Int 154(1):1–7. https://doi.org/10.1046/j.1365-246X.2003.01899.x

    Article  Google Scholar 

  • Gerard P, Luzum B (2010) IERS conventions (2010). Bureau International Des Poids Et Mesures Sevres (France), 1–179. Retrieved from http://www.iers.org/TN36/. Accessed 1 Oct 2018

  • Goudarzi MA, Cocard M, Santerre R (2014) EPC: matlab software to estimate Euler pole parameters. GPS Solut 18(1):153–162. https://doi.org/10.1007/s10291-013-0354-4

    Article  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning, 2nd edn. Springer, New York, pp 520–528

    Book  Google Scholar 

  • Herring T (2003) MATLAB Tools for viewing GPS velocities and time series. GPS Solut 7(3):194–199. https://doi.org/10.1007/s10291-003-0068-0

    Article  Google Scholar 

  • Herring T A, King R W, Floyd M A and McClusky S C (2015a) GAMIT Reference Manual: GPS Analysis at MIT, release 10.61, Dep. Of Earth, Atmos., and Planet. Sci., Mass. Inst. of Technol., Cambridge

  • Herring TA, Floyd MA, King RW, McClusky SC (2015) GLOBK reference manual: global Kalman filter VLBI and GPS analysis program, release 10.6. Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  • Kahle H-G, Cocard M, Peter Y, Geiger A, Reilinger R, Barka A, Veis G (2000) GPS-derived strain rate field within the boundary zones of the Eurasian, African, and Arabian Plates. J Geophys Res 105(B10):23353. https://doi.org/10.1029/2000JB900238

    Article  Google Scholar 

  • Kaufman L, Rousseeuw PJ (1990) Finding groups in data: an introduction to cluster analysis, 1st edn. Wiley, New York

    Book  Google Scholar 

  • Lenk O, Türkezer A, Ergintav S, Kurt AI, Belgen A (2003) Monitoring the kinematics of anatolia using permanent GPS network stations. Turk J Earth Sci 12(1):55–65

    Google Scholar 

  • Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56(5–6):394–415. https://doi.org/10.1007/s10236-006-0086-x

    Article  Google Scholar 

  • Macqueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth berkeley symposium on mathematical statistics and probability, vol 1, No 233, pp 281–297. citeulike-article-id:6083430

  • McCaffrey R, King RW, Payne SJ, Lancaster M (2013) Active tectonics of northwestern U.S. inferred from GPS-derived surface velocities. J Geophys Res Solid Earth 118(2):709–723. https://doi.org/10.1029/2012jb009473

    Article  Google Scholar 

  • McClusky S et al (2000) Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J Geophys Res Solid Earth 105(B3):5695–5719. https://doi.org/10.1029/1999JB900351

    Article  Google Scholar 

  • Melbourne W G (1985) The case for ranging in GPS based geodetic systems. In: Goad C (ed) Proceedings of 1st international symposium on precise positioning with the global positioning system. U.S. Department of Commerce, Rockville. 15–19 April, pp 373–386

  • Nyst M, Thatcher W (2004) New constraints on the active tectonic deformation of the Aegean. J Geophys Res Solid Earth 109(11):1–23. https://doi.org/10.1029/2003JB002830

    Article  Google Scholar 

  • Ozdemir S (2016) On the estimation of precise coordinates and velocities of TNPGN and TNPGN-active stations (in Turkish—TUSAGA ve TUSAGA-Aktif Istasyonlarinin Hassas Koordinat ve Hizlarinin Hesaplanmasi Uzerine). Map J, January 2016, Issue 155, General Directorate of Mapping, Ankara

  • Ozener H, Arpat E, Ergintav S, Dogru A, Cakmak R, Turgut B, Dogan U (2010) Kinematics of the eastern part of the North Anatolian Fault Zone. J Geodyn 49(3–4):141–150. https://doi.org/10.1016/j.jog.2010.01.003

    Article  Google Scholar 

  • Petrie EJ, King MA, Moore P, Lavallee DA (2010) Higher-order ionospheric effects on the GPS reference frame and velocities. J Geophys Res Solid Earth 115(3):1–8. https://doi.org/10.1029/2009JB006677

    Article  Google Scholar 

  • Reilinger R et al (2006) GPS constraints on continental deformation in the Africa–Arabia–Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res Solid Earth 111(5):1–26. https://doi.org/10.1029/2005JB004051

    Article  Google Scholar 

  • Richards JA, Jia X (2006) Remote sensing digital image analysis: an introduction. Springer, Berlin, pp 211–213

    Google Scholar 

  • Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20(C):53–65. https://doi.org/10.1016/0377-0427(87)90125-7

    Article  Google Scholar 

  • Savage JC, Simpson RW (2013a) Clustering of GPS velocities in the Mojave Block, southeastern California. J Geophys Res Solid Earth 118(4):1747–1759. https://doi.org/10.1029/2012JB009699

    Article  Google Scholar 

  • Savage JC, Simpson RW (2013b) Clustering of velocities in a GPS network spanning the Sierra Nevada Block, the Northern Walker Lane Belt, and the Central Nevada Seismic Belt, California–Nevada. J Geophys Res Solid Earth 118(9):4937–4947. https://doi.org/10.1002/jgrb.50340

    Article  Google Scholar 

  • Savage JC, Wells RE (2015) Identifying block structure in the Pacific Northwest, USA. J Geophys Res Solid Earth 120:7905–7916. https://doi.org/10.1002/2015JB012277

    Article  Google Scholar 

  • Schaffrin B, Bock Y (1988) A unified scheme for processing GPS phase observations. Bull Geodesique 62:142. https://doi.org/10.1007/BF02519222

    Article  Google Scholar 

  • Simpson RW, Thatcher W, Savage JC (2012) Using cluster analysis to organize and explore regional GPS velocities. Geophys Res Lett 39(17). https://doi.org/10.1029/2012gl052755

  • Smith WHF, Wessel P (1990) Gridding with continuous curvature splines in tension. Geophysics 55(3):293–305. https://doi.org/10.1190/1.1442837

    Article  Google Scholar 

  • Thatcher W (2009) How the continents deform: the evidence from tectonic geodesy. Annu Rev Earth Planet Sci 37(1):237–262. https://doi.org/10.1146/annurev.earth.031208.100035

    Article  Google Scholar 

  • Tibshirani R, Walther G, Hastie T (2001) Estimating the number of clusters in a data set via the gap statistic. J R Stat Soc Ser B Stat Methodol 63(2):411–423. https://doi.org/10.1111/1467-9868.00293

    Article  Google Scholar 

  • Tregoning P, Watson C (2009) Atmospheric effects and spurious signals in GPS analyses. J Geophys Res Solid Earth 114(9):1–15. https://doi.org/10.1029/2009JB006344

    Article  Google Scholar 

  • Tukey JW (1977) Exploratory data analysis. AddisonWesley, Reading

    Google Scholar 

  • Ustun A et al (2015) Land subsidence in Konya Closed Basin and its spatiotemporal detection by GPS and DInSAR. Environ Earth Sci 73(10):6691–6703

    Article  Google Scholar 

  • Ward JH Jr (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244

    Article  Google Scholar 

  • Wubbena G (1985) Software developments for geodetic positioning with GPS using TI 4100 code and carrier measurements. In: Goad C (ed) Proceedings of 1st international symposium on precise positioning with the global positioning system. U.S. Department of Commerce, Rockville. 15–19 April, pp 403–412

Download references

Acknowledgements

This study would not have been possible without the continuous data of CORS-TR stations operated by the General Directorate of Mapping and the General Directorate of Land Registry and Cadastre, Turkey. We thank the editors and the two anonymous reviewers for their thorough and constructive reviews that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soner Özdemir.

Appendix

Appendix

See Table 7.

Table 7 Horizontal velocity field in Eurasia-fixed reference frame

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özdemir, S., Karslıoğlu, M.O. Soft clustering of GPS velocities from a homogeneous permanent network in Turkey. J Geod 93, 1171–1195 (2019). https://doi.org/10.1007/s00190-019-01235-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-019-01235-z

Keywords

Navigation