Skip to main content

Advertisement

Log in

Temporal and spatial movement characteristics of the Altyn Tagh fault inferred from 21 years of InSAR observations

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

We use 21 years of interferometric synthetic aperture radar data obtained between 1996 and 2017 from three European Space Agency satellites, namely the European Remote Satellite (ERS), Environmental Satellite (ENVISAT) and Sentinel-1, to estimate the present-day strain accumulation rate within the central segment of the Altyn Tagh fault (ATF) along the northern boundary of the Tibetan Plateau. We obtain the first Sentinel-1 line-of-sight velocity map, thereby revealing a velocity gradient across the main ATF. Due to significant near-fault deformation, which cannot be modeled by utilizing only the classic Savage deep slip model, a dislocation extending to a certain depth representing strain release by shallow creep is combined with a deep screw dislocation to model the observations. The best-fitting results are a 9.0 mm/year slip rate with a 20.0 km locking depth and a 2.0 mm/year creep rate with a 2.0 km creep extent for the ERS data, a 7.4 mm/year slip rate with an 18.0 km locking depth and a 1.8 mm/year creep rate with a 2.8 km creep extent for the ENVISAT data, and a 6.0 mm/year slip rate with a 21.0 km locking depth and a 1.5 mm/year creep rate with a 1.0 km creep extent for the Sentinel-1 data based on a single fault inversion. The slip rate decreases with time along this section of the ATF, while the creep rate varies around 1.8 mm/year, which does not constitute an obvious variation. In the spatial domain, the fault was divided into three segments, only Sentinel-1 data were used in the inversion, and the best-fitting values for the slip rate, locking depth, creep rate and creep extent are [7.4, 21.0, 1.8, 1.5], [6.8, 23.0, 1.5, 1.0] and [5.3, 20.0, 2.0, 1.1] for the Kuyake segment, Kulukuole segment and Aqiang segment, respectively. We conclude that deep slip motion within the ATF was variable in both the time domain and the space domain, whereas shallow creep, which must be accounted for using the Fattahi model considering both deep and shallow motions, was stable at ~ 2.0 mm/year with a creep extent of 1.0–2.0 km. The seismic moment release rate is less than 9.0% of the geodetic moment accumulation rate, which indicates a high seismic risk within the ATF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Agram PS, Simons M (2015) A noise model for InSAR time series. J Geophys Res Solid Earth 120:2752–2771. https://doi.org/10.1002/2014JB011271

    Article  Google Scholar 

  • Amelung F, Galloway DL, Bell JW, Zebker HA, Laczniak RJ (1999) Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology 27(6):483–486

    Article  Google Scholar 

  • Avouac J-P, Tapponnier P (1993) Kinematic model of active deformation in central Asia. Geophys Res Lett 20:895–898

    Article  Google Scholar 

  • Bendick R, Bilham R, Freymueller J, Larson K, Yin G (2000) Geodetic evidence for a low slip rate in the Altyn Tagh fault system. Nature 404(6773):69–72

    Article  Google Scholar 

  • Berardino P, Fornaro G, Lanari R, Member S, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Geosci Remote Sens Lett 40(11):2375–2383

    Article  Google Scholar 

  • Biggs J, Wright T, Lu Z et al (2007) Multiinterferogram method for measuring interseismic deformation: Denali Fault, Alaska[J]. Geophys J R Astron Soc 170(3):1165–1179

    Article  Google Scholar 

  • Cheng F, Jolivet M, Fu S, Zhang C, Zhang Q, Guo Z (2016) Large-scale displacement along the AltynTagh fault (north Tibet) since its Eocene initiation: insight from detrital zircon U-Pb geochronology and subsurface data. Tectonophysics 677:261–279

    Article  Google Scholar 

  • Cowgill E (2007) Impact of riser reconstructions on estimation of secular variation in rates of strike–slip faulting: revisiting the Cherchen River site along the AltynTagh fault, NW China. Earth Planet Sci Lett 254(3):239–255

    Article  Google Scholar 

  • Cowgill E, Gold RD, Xuanhuan C, Xia-Feng W, Arrowsmith JR, Southon J (2009) Low quaternary slip rate reconciles geodetic and geologic rates along the AltynTagh fault, northern Tibet. Geology 37:647–650

    Article  Google Scholar 

  • Daout S, Doin M-P, Peltzer G, Lasserre C, Socquet A, Volat M, Sudhaus H (2018) Strain partitioning and present-day fault kinematics in NW Tibet from Envisat SAR interferometry. J Geophys Res Solid Earth 123:2462–2483. https://doi.org/10.1002/2017JB015020

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  • Elliott JR, Biggs J, Parsons B, Wright TJ (2008) InSAR slip rate determination on the AltynTagh Fault, northern Tibet, in the presence of topographically correlated atmospheric delays. Geophys Res Lett 35:L12309. https://doi.org/10.1029/2008GL033659

    Article  Google Scholar 

  • Fattahi H, Amelung F (2016) InSAR observations of strain accumulation and fault creep along the Chaman Fault system, Pakistan and Afghanistan. Geophys Res Lett 43:8399–8406. https://doi.org/10.1002/2016GL070121

    Article  Google Scholar 

  • Garthwaite MC, Wang H, Wright TJ (2013) Broadscale interseismic deformation and fault slip rates in the central Tibetan Plateau observed using InSAR. J Geophys Res Solid Earth 118:5071–5083. https://doi.org/10.1002/jgrb.50348

    Article  Google Scholar 

  • Gold RD, Cowgill E, Arrowsmith JR, Gosse J, Chen X, Wang X-F (2009) Riser diachroneity, lateral erosion, and uncertainty in rates of strike-slip faulting: a case study from Tuzidun along the AltynTagh fault, NW China. J Geophys Res 114:B04401. https://doi.org/10.1029/2008JB005913

    Article  Google Scholar 

  • Grandin R, Socquet A, Binet R, Klinger Y, Jacques E, de Chabalier J-B et al (2009) September 2005 Manda Hararo-Dabbahu rifting event, Afar (Ethiopia): constraints provided by geodetic data. J Geophys Res 114:B04401. https://doi.org/10.1029/2008JB005913

    Article  Google Scholar 

  • Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res Solid Earth 84(B5):2348–2350

    Article  Google Scholar 

  • Hanssen RF, Weckwerth TM, Zebker HA, Klees R (1999) High-resolution water vapor mapping from interferometric radar measurements. Science 283(5406):1297–1299

    Article  Google Scholar 

  • He J, Vernant P, Chéry J, Wang W, Lu S, Ku W et al (2013) Nailing down the slip rate of the AltynTagh fault. Geophys Res Lett 40:5382–5386. https://doi.org/10.1002/2013GL05749

    Article  Google Scholar 

  • Hussain E, Hooper A, Wright TJ, Walters RJ, Bekaert DPS (2016) Interseismic strain accumulation across the central North Anatolian Fault from iteratively unwrapped InSAR measurements. J Geophys Res Solid Earth 121:9000–9019. https://doi.org/10.1002/2016jb013108

    Article  Google Scholar 

  • Jolivet M, Brunel M, Seward D, Xu Z, Yang J, Roger F et al (2001) Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan Plateau: fission-track constraints. Tectonophysics 343(1):111–134

    Article  Google Scholar 

  • Jolivet R, Cattin R, Chamot-Rooke N, Lasserre C, Peltzer G (2008) Thin-plate modeling of interseismic deformation and asymmetry across the AltynTagh fault zone. Geophys Res Lett 35:L02309. https://doi.org/10.1029/2007GL031511

    Article  Google Scholar 

  • Jolivet R, Lasserre C, Doin M-P, Peltzer G, Avouac J-P, Jianbao S et al (2013) Spatio-temporal evolution of aseismic slip along the Haiyuan fault, China: implications for fault frictional properties. Earth Planet Sci Lett 377–378:23–33

    Article  Google Scholar 

  • Jolivet R, Agram PS, Lin NY, Simons M, Doin M, Peltzer G, Li Z (2014) Improving InSAR geodesy using global atmospheric models. J Geophys Res Solid Earth 119:2324–2341. https://doi.org/10.1002/2013JB010588

    Article  Google Scholar 

  • Jolivet R, Simons M, Agram PS, Duputel Z, Shen Z-K (2015) Aseismic slip and seismogenic coupling along the central San Andreas Fault. Geophys Res Lett 42:297–306. https://doi.org/10.1002/2014gl062222

    Article  Google Scholar 

  • Lasserre C, Cavalié O, Peltzer G, Socquet A, Doin M, Jianbao S et al (2007) Interseismic strain across the AltynTagh and Haiyuan faults at the northern edge of the Tibetan Plateau, measured by space geodesy. Geophys Res Abstr CDROM 9:10102

    Google Scholar 

  • Li Y, Shan X, Qu C, Liu Y, Han N (2018) Crustal deformation of the AltynTagh fault based on GPS. J Geophys Res Solid Earth. https://doi.org/10.1029/2018jb015814

    Google Scholar 

  • Manconi A, Casu F (2012) Joint analysis of displacement time series retrieved from SAR phase and amplitude: impact on the estimation of volcanic source parameters. Geophys Res Lett 39:L14301. https://doi.org/10.1029/2012GL052202

    Article  Google Scholar 

  • Matte P, Tapponnier P, Arnaud N, Bourjot L, Avouac J, Vidal P et al (1996) Tectonics of western Tibet, between the Tarim and the Indus. Earth Planet Sci Lett 142(3):311–330

    Article  Google Scholar 

  • Mériaux A-S, Ryerson F, Tapponnier P, Van der Woerd J, Finkel R, Xu X et al (2004) Rapid slip along the central AltynTagh fault: morphochronologic evidence from Cherchen He and Sulamu Tagh. J Geophys Res 109:B06401. https://doi.org/10.1029/2003JB002558

    Article  Google Scholar 

  • Mériaux A-S, Tapponnier P, Ryerson F, Xiwei X, King G, Van der Woerd J et al (2005) The Aksay segment of the northern AltynTagh fault: tectonic geomorphology, landscape evolution, and Holocene slip rate. J Geophys Res 110:B04404. https://doi.org/10.1029/2004JB003210

    Article  Google Scholar 

  • Mériaux A-S, Van Der Woerd J, Tapponnier P, Ryerson FJ, Finkel RC, Lasserre C et al (2012) The Pingding segment of the AltynTagh fault (91e): holocene slip-rate determination from cosmogenic radio nuclide dating of offset fluvial terraces. J Geophys Res 117:B09406. https://doi.org/10.1029/2012JB009289

    Article  Google Scholar 

  • Molnar P, Tapponnier P (1975) Cenozoic tectonics of Asia: effects of a continental collision. Science 189(4201):419–426

    Article  Google Scholar 

  • Peltzer G, Saucier F (1996) Present-day kinematics of Asia derived from geologic fault rates. J Geophys Res 101(B12):27943–27956

    Article  Google Scholar 

  • Peltzer G, Tapponnier P, Armijo R (1989) Magnitude of late Quaternary left-lateral displacements along the north edge of Tibet. Science 246(4935):1285–1289. https://doi.org/10.1126/science.246.4935.1285

    Article  Google Scholar 

  • Pepe A, Lanari R, Member S (2006) On the extension of the minimum cost flow algorithm for phase unwrapping of multitemporal differential SAR interferograms. IEEE Geosci Remote Sens Lett 44(9):2374–2383

    Article  Google Scholar 

  • Rousset B, Jolivet R, Simons M, Lasserre C, Riel B, Milillo P et al (2016) An aseismic slip transient on the north Anatolian fault. Geophys Res Lett 43:3254–3262. https://doi.org/10.1002/2016GL068250

    Article  Google Scholar 

  • Savage JC, Burford RO (1973) Geodetic determination of relative plate motion in central California. J Geophys Res 78(5):832–845. https://doi.org/10.1029/JB078i005p00832

    Article  Google Scholar 

  • Savage JC, Simpson RW (1997) Surface strain accumulation and the seismic moment tensor. Bull Seismol Soc Am 87(5):1345–1353

    Google Scholar 

  • Schlögel R, Doubre C, Malet J-P, Masson F (2015) Landslide deformation monitoring with ALOS/PALSAR imagery: a D-InSAR geomorphological interpretation method. Geomorphology 231:314–330

    Article  Google Scholar 

  • Segall P (2010) Earthquake and volcano deformation. Princeton Univ ersity Press, Princeton

    Book  Google Scholar 

  • Strozzi T, Ambrosi C, Raetzo H (2013) Interpretation of aerial photographs and satellite SAR interferometry for the inventory of landslides. Remote Sens 5(5):2554–2570

    Article  Google Scholar 

  • Tape C, Musé P, Simons M, Dong D, Webb F (2010) Multiscale estimation of GPS velocity fields. Geophys J Int 179(2):945–971

    Article  Google Scholar 

  • Tapponnier P, Zhiqin X, Roger F, Meyer B, Arnaud N, Wittlinger G et al (2001) Oblique stepwise rise and growth of the Tibet Plateau. Science 294(5547):1671–1677

    Article  Google Scholar 

  • Wadge G, Webley P, James I, Bingley R, Dodson A, Waugh S et al (2002) Atmospheric models, GPS and InSAR measurements of the tropospheric water vapour field over Mount Etna. Geophys Res Lett 29(19):1905. https://doi.org/10.1029/2002GL015159

    Article  Google Scholar 

  • Wallace K, Yin G, Bilham R (2004) Inescapable slow slip on the AltynTagh fault. Geophys Res Lett 31:L09613. https://doi.org/10.1029/2004GL019724

    Article  Google Scholar 

  • Wang H, Liu M, Cao J, Shen X, Zhang G (2011) Slip rates and seismic moment deficits on major active faults in mainland China. J Geophys Res 116:B02405. https://doi.org/10.1029/2010JB007821

    Google Scholar 

  • Wang W, Qiao X, Yang S, Wang D (2017) Present-day velocity field and block kinematics of Tibetan Plateau from GPS measurements. Geophys J Int 208:1088–1102

    Article  Google Scholar 

  • Washburn Z, Arrowsmith JR, Forman SL, Cowgill E, Xiaofeng W, Yueqiao Z, Zhengle C (2001) Late Holocene earthquake history of the central AltynTagh Fault, China. Geology 29:1051–1054

    Article  Google Scholar 

  • Wasowski J, Bovenga F (2014) Investigating landslides and unstable slopes with satellite multi temporal interferometry: current issues and future perspectives. Eng Geol 174:103–138

    Article  Google Scholar 

  • Werner C, Wegmüller U, Strozzi T, Wiesmann A (2001) GAMMA SAR and interferometric processing software. In: Proceedings of the ERS ENVISAT symposium, Gothenburg, Sweden, 16–20 October

  • Wessel P, Smith WH (1991) Free software helps map and display data. EOS Trans Am Geophys Union 72(41):441–446

    Article  Google Scholar 

  • Wimpenny S, Copley A, Ingleby T (2017) Fault mechanics and post-seismic deformation at Bam, SE Iran. Geophys J Int 209(2):1018–1035

    Article  Google Scholar 

  • Wright TJ, Parsons B, England PC, Fielding EJ (2004) Insar observations of low slip rates on the major faults of western tibet. Science 305(5681):236–239

    Article  Google Scholar 

  • Xiao Q, Shao G, Liu-Zeng J, Oskin ME, Zhang J, Zhao G, Wang J (2015) Eastern termination of the AltynTagh Fault, western China: constraints from a magnetotelluric survey. J Geophys Res Solid Earth 120:2838–2858

    Article  Google Scholar 

  • Xu X, Wang F, Zheng R, Chen W, Ma W, Yu G et al (2005) Late quaternary sinistral slip rate along the AltynTagh fault and its structural transformation model. Sci China, Ser D Earth Sci 48(3):384–397

    Article  Google Scholar 

  • Yin A, Harrison TM (2000) Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci 28(1):211–280

    Article  Google Scholar 

  • Zhang P-Z, Shen Z, Wang M, Gan W, Bürgmann R, Molnar P et al (2004) Continuous deformation of the Tibetan Plateau from global positioning system data. Geology 32(9):809–812

    Article  Google Scholar 

  • Zheng G, Wang H, Wright TJ, Lou Y, Zhang R, Zhang W, Wei N (2017) Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements. J Geophys Res Solid Earth 122:9290–9312. https://doi.org/10.1002/2017JB014465

    Article  Google Scholar 

  • Zhu S, Xu C, Wen Y, Liu Y (2016) Interseismic deformation of the Altyn Tagh fault determined by interferometric synthetic aperture radar (InSAR) measurements. Remote Sens 8(3):233

    Article  Google Scholar 

Download references

Acknowledgments

The SAR data set was provided by the European Space Agency (ESA), ERS and ENVISAT data were obtained through the ESA’s Earth Observation Link (EOLi)-Sa catalog and the Sentinel-1 data were downloaded from the Sentinel Scientific Data Hub. This work was supported by National Natural Science Foundation of China (NSFC) projects (41431069, 41721003 and 41574002). The historical earthquake catalog was obtained from the China Earthquake Networks Center (CENC). Most of the figures were prepared using the Generic Mapping Tools (GMT) software (Wessel and Smith 1991).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caijun Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 457 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Zhu, S. Temporal and spatial movement characteristics of the Altyn Tagh fault inferred from 21 years of InSAR observations. J Geod 93, 1147–1160 (2019). https://doi.org/10.1007/s00190-019-01232-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-019-01232-2

Keywords

Navigation