Skip to main content
Log in

M-estimation using unbiased median variance estimate

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

This paper first proves that the traditional median variance estimate is biased when the sample number is small and then proposes an unbiased median variance estimate to calibrate for the bias of the variance estimate. The scaled median variance estimate is firstly derived, and the unbiased median variance estimate is formed with independent residuals in an adjustment model no matter whether the measurements are contaminated by outliers or not. Using the unbiased median variance estimate, the M-estimate is constructed to mitigate for the biases caused by the variance estimate. The IGGIII reduction factor is used to verify the proposed algorithms by a levelling network example. Numerical analysis confirms that the proposed median variance estimate can achieve better unbiasedness for contaminated measurement set, but the dispersion of our estimate is unfortunately larger than that for the least-squares estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: \( \widehat{\sigma }_{0} \)
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Baarda W (1967) Statistical concepts in geodesy. Netherlands Geodetic, Commission, Publications on Geodesy, New Series 2, No. 4, Delft. ISBN-13: 9789061322085, ISBN-10: 9061322081

  • Baarda W (1968) A testing procedure for use in geodetic networks. Netherland Geodetic Commission, vol 2, no 5. ISBN-13: 9789061322092, ISBN-10: 906132209X

  • Beaton AE, Tukey JW (1974) The fitting of power series, meaning polynomials, illustrated on band-spectroscopic data. Technometrics 16(2):147–185

    Article  Google Scholar 

  • Cureton EE (1968) Unbiased estimation of the standard deviation. Am Stat 22(1):22

    Google Scholar 

  • Guttman I, Lin DKJ (1995) Robust recursive estimation for correlated observations. Stat Prob Lett 23:79–92

    Article  Google Scholar 

  • Hampel FR, Ronchetti EM, Rousseeuw PJ, Stahel WA (1986) Robust statistics, the approach based on influence functions. Wiley, New York

    Google Scholar 

  • Hekimoglu S (1997) Finite sample breakdown points of outlier detection procedures. J Surv Eng 125(1):15–31

    Article  Google Scholar 

  • Hekimoglu S (1999) Robustifying conventional outlier detection procedures. J Surv Eng 125(2):69–86

    Article  Google Scholar 

  • Huber PJ (1964) Robust estimation of a location parameter. Ann Math Stat 35(2):73–101

    Article  Google Scholar 

  • Huber PJ (1981) Robust statistics. Wiley, New York

    Book  Google Scholar 

  • Huber PJ (1984) Finite sample breakdown of M- and P-estimators. Ann Stat 12:119–126

    Article  Google Scholar 

  • Knight NL, Wang J, Rizos C (2010) Generalized measures of reliability for multiple outliers. J Geod 84:625–635

    Article  Google Scholar 

  • Koch KR (1981) Deviations from the null-hypothesis to be detected by statistical tests. Bull Géodés 55:41–48

    Article  Google Scholar 

  • Koch KR (1999) Parameter estimation and hypothesis testing in linear models, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Koch KR (2013) Robust estimation by expectation maximization algorithm. J Geod 87(2):107–116

    Article  Google Scholar 

  • Koch KR (2015) Minimal detectable outliers as measures of reliability. J Geod 89(5):483–490

    Article  Google Scholar 

  • Kok JJ (1984) On data snooping and multiple outlier testing. NOAA Technical Report, NOS NGS. 30, U.S. Department of Commerce, Rockville, Maryland

  • Krarup T, Kubik K, Juhl J (1980) Götterdämmerung. Over least squares. In: Proceedings of international society for photogrammetry 14th congress, Hamburg, pp 370–378

  • Lehmann R (2012) Improved critical values for extreme normalized and studentized residuals in Gauss–Markov models. J Geod 86(12):1137–1146

    Article  Google Scholar 

  • Lehmann R, Lösler M (2016) Multiple outlier detection: hypothesis tests versus model selection by information criteria. J Surv Eng 142(4):04016017

    Article  Google Scholar 

  • Li B, Shen Y, Lou L (2011) Efficient estimation of variance and covariance components: a case study for GPS stochastic model evaluation. IEEE Trans Geosci Remote Sens 49(1):203–210

    Article  Google Scholar 

  • Mao S, Wang J, Pu X (1998) Advanced mathematical statistics, 2nd edn. China Higher Education Press, Beijing

    Google Scholar 

  • Ong EP, Spann M (1999) Robust optical flow computation based on least-median-of-squares regression. Int J Comput Vis 31(1):51–82

    Article  Google Scholar 

  • Pope AJ (1976) The test statistics of residuals and the detection of outliers. In: NOAA technical report NOS65 NGS 1. US Department of Commerce, National Geodetic Survey, Rockville, Maryland

  • Prószyñski W (2000) On outlier-hiding effects in specific Gauss–Markov models: geodetic examples. J Geod 74:581–589

    Article  Google Scholar 

  • Ross SM (2014) A first course in probability, 9th edn. Pearson Education Limited, Harlow

    Google Scholar 

  • Rousseeuw P (1984) Least median of squares regression. J Am Stat Assoc 79(388):871–880

    Article  Google Scholar 

  • Rousseeuw PJ, Leroy AM (1987) Robust regression and outlier detection. Wiley, New York. ISBN 0-471-85233-3

    Book  Google Scholar 

  • Rousseeuw P, Yohai V (1984) Robust regression by means of S-estimators. In: Franke J, Härdle W, Martin D (eds) Robust and nonlinear time series analysis. Springer, Berlin, pp 256–272

    Chapter  Google Scholar 

  • Schaffrin B (1997) Reliability measures for correlated observations. J Surv Eng 123(3):126–137

    Article  Google Scholar 

  • Teunissen PJG (1998) Minimal detectable biases of GPS data. J Geod 72(4):236–244

    Article  Google Scholar 

  • Teunissen PJG (2006) Testing theory: an introduction, 2nd edn. Delft University Press, Delft. ISBN 9040719756

    Google Scholar 

  • Van Loon JP. (2008) Robust estimation and robust re-weighting in satellite gravity modelling. In: Xu P, Liu J, Dermanis A (eds) VI Hotine-Marussi symposium on theoretical and computational geodesy. International Association of Geodesy Symposia, vol 132. Springer, Berlin, pp 43–48

  • Wang J, Chen Y (1994) On the reliability measure of observations. Acta Geodaetica et Cartographica Sinica, English Edition, pp 42–51

  • Xu P (2005) Sign-constrained robust least squares, subjective breakdown point and the effect of weights of observations on robustness. J Geod 79(1–3):146–159

    Article  Google Scholar 

  • Yang Y (1994) Robust estimation for dependent observations. Manuscr Geod 19:10–17

    Google Scholar 

  • Yang Y, Cheng MK, Shum CK, Tapley BD (1999) Robust estimation of systematic errors of satellite laser range. J Geod 73:345–349

    Article  Google Scholar 

  • Yang Y, Song L, Xu T (2002) Robust estimator for correlated observations based on bifactor equivalent weights. J Geod 76:353–358

    Article  Google Scholar 

  • Yang L, Wang J, Knight NL, Shen Y (2013) Outlier separability analysis with a multiple alternative. J Geod 87:591–604

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Chris Rizos for his very helpful revision on the draft of this paper. This work is sponsored by the National Key R&D Program of China (2017YFA0603103) and National Natural Science Foundation of China (41731069, 41504022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunzhong Shen.

Appendix

Appendix

The detailed proof for Eq. (12) is as follows.

Letting \( x = \frac{{\left| { \varepsilon_{1} } \right|}}{2} \) and \( y = \frac{{\left| { \varepsilon_{2} } \right|}}{2} \), from Eqs. (1) and (9); it is deduced that the corresponding PDF is

$$ f\left( x \right) = \frac{4}{{\sqrt {2\pi } \sigma_{0} }}\exp \left\{ { - \frac{{2x^{2} }}{{\sigma_{0}^{2} }}} \right\}, \quad x \ge 0 $$
(71)

and

$$ f\left( y \right) = \frac{4}{{\sqrt {2\pi } \sigma_{0} }}\exp \left\{ { - \frac{{2y^{2} }}{{\sigma_{0}^{2} }}} \right\}, \quad y \ge 0 $$
(72)

Letting \( z = x + y \), since variable \( x \) and \( y \) are independent, there is

$$ \begin{aligned} & f\left( z \right) = \mathop \smallint \limits_{ - \infty }^{ + \infty } f\left( x \right)f\left( {z - x} \right){\text{d}}x = \mathop \smallint \limits_{0}^{ + \infty } \frac{8}{{\pi \sigma_{0}^{2} }}\exp \left\{ { - \frac{{2x^{2} + 2\left( {z - x} \right)^{2} }}{{\sigma_{0}^{2} }}} \right\}{\text{d}}x \\ & \quad = \frac{8}{{\pi \sigma_{0}^{2} }}\exp \left\{ { - \frac{{z^{2} }}{{\sigma_{0}^{2} }}} \right\}\mathop \smallint \limits_{0}^{ + \infty } \exp \left\{ { - \frac{{4\left( {x - \frac{z}{2}} \right)^{2} }}{{\sigma_{0}^{2} }}} \right\}{\text{d}}x \\ & \quad = \frac{4\sqrt 2 }{{\sqrt \pi \sigma_{0} }}\exp \left\{ { - \frac{{z^{2} }}{{\sigma_{0}^{2} }}} \right\}\frac{1}{{\sqrt {2\pi } \frac{{\sigma_{0} }}{2}}}\mathop \smallint \limits_{0}^{ + \infty } \exp \left\{ { - \frac{{\left( {x - \frac{z}{2}} \right)^{2} }}{{\left( {\frac{{\sigma_{0} }}{2}} \right)^{2} }}} \right\}{\text{d}}x \\ & \quad = \frac{4\sqrt 2 }{{\sqrt \pi \sigma_{0} }}\exp \left\{ { - \frac{{z^{2} }}{{\sigma_{0}^{2} }}} \right\}\frac{1}{{\sqrt {2\pi } }}\mathop \smallint \limits_{0}^{ + \infty } e^{{ - t^{2} }} {\text{d}}t \\ \end{aligned} $$
(73)

Since

$$ \frac{1}{{\sqrt {2\pi } }}\mathop \smallint \limits_{0}^{ + \infty } e^{{ - t^{2} }} {\text{d}}t = \frac{1}{2} $$
(74)

Substituting Eq. (74) into Eq. (73), it is deduced

$$ f\left( z \right) = \frac{4}{{\sqrt {2\pi } \sigma_{0} }}\exp \left\{ { - \frac{{z^{2} }}{{\sigma_{0}^{2} }}} \right\} $$
(75)

Therefore, the expectation of \( z \) is

$$ \begin{aligned} & E\left( z \right) = \mathop \smallint \limits_{ - \infty }^{ + \infty } zf\left( z \right){\text{d}}z = \frac{4}{{\sqrt {2\pi } }}\mathop \smallint \limits_{0}^{ + \infty } \frac{z}{{\sigma_{0} }}\exp \left\{ { - \frac{{z^{2} }}{{\sigma_{0}^{2} }}} \right\}{\text{d}}z \\ & \quad = \frac{{4\sigma_{0} }}{{\sqrt {2\pi } }}\mathop \smallint \limits_{0}^{ + \infty } \frac{z}{{\sigma_{0} }}\exp \left\{ { - \frac{{z^{2} }}{{\sigma_{0}^{2} }}} \right\}d\frac{z}{{\sigma_{0} }} \\ & \quad = \frac{{4\sigma_{0} }}{{\sqrt {2\pi } }}\mathop \smallint \limits_{0}^{ + \infty } te^{{ - t^{2} }} {\text{d}}t = \frac{{2\sigma_{0} }}{{\sqrt {2\pi } }}\varGamma \left( 1 \right) = \sqrt {\frac{2}{\pi }} \sigma_{0} \\ \end{aligned} $$
(76)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Shen, Y. & Li, B. M-estimation using unbiased median variance estimate. J Geod 93, 911–925 (2019). https://doi.org/10.1007/s00190-018-1215-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-018-1215-2

Keywords

Navigation