Skip to main content
Log in

Atmospheric refraction and system stability investigations in short-baseline VLBI observations

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Geodetic very long baseline interferometry observations of radio telescopes, which are located in an immediate neighborhood, provide an optimal experimental setup for investigations in atmospheric refraction and system stability issues. In this study, a series of dedicated VLBI sessions with very short baselines, referred to as WHISP (Wettzell HIgh SPeed) sessions, has been designed. Six sessions were observed, three on a 123-m baseline only and another three adding to the short baseline the VLBI telescope at Onsala in Sweden. New is that these sessions and their analysis benefit from the high velocities of the radio telescopes in changing from radio source to radio source providing an unprecedented number of observations on such a short baseline and consequently an extremely reliable parameter estimation. The resulting European triangle is used to compare atmospheric time series derived by two adjacent baselines. Before this could be done, the stability of the observing system, in particular the noise contributions induced by the stability of the hydrogen maser clocks and the correlation process, is investigated to separate the individual uncertainty components. We determined the uncertainty level of the observing systems to be on the order of 10 ps. We were also able to quantify the effect of applying manual phase calibration instead of scan-by-scan system calibration, which is on the order of about 20 ps in this specific example and therefore not negligible. It could be substantiated that estimating clock parameters in geodetic VLBI absorb other effects because direct H-Maser comparisons produce variations at the 5–10 ps level while clock estimates are a factor of 3–6 times larger. Atmospheric refraction has been investigated at different stages: Zenith wet delays were estimated in a differential model for one station relative to the other station and in an absolute sense using two adjacent baselines between the two Wettzell antennas and the Onsala telescope. In both cases, the variations in the estimated atmospheric parameters are found to be of the order of only 1–3 mm and the remaining variations are assigned to unmodeled random effects, particularly refractivity fluctuations in the neutral atmosphere. This was confirmed by introducing an atmospheric turbulence model yielding WRMS post-fit residuals between 7 and 20 ps when clock and correlator effects have been subtracted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Artz T, Halsig S, Iddink A, Nothnagel A (2016) ivg::ASCOT: the development of a new VLBI Software Package. In: Behrend D, Baver KD, Armstrong K (eds) IVS 2016 General Meeting Proceedings, “New Horizons with VGOS”, Johannesburg, South Africa, March 13–19 2016, pp 217–221

  • Bevis M, Businger S, Herring T, Rocken C, Anthes R, Ware R (1992) GPS meteorology—remote sensing of atmospheric water vapor using the global positioning system. J Geophys Res 97:15787–15801

    Article  Google Scholar 

  • Böhm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-range Weather Forecasts operational analysis data. J Geophys Res 111:B02406. https://doi.org/10.1029/2005JB003629

    Google Scholar 

  • Böhm J, Salstein D, Alizadeh M, Wijaya D, Schuh H (2013) Geodetic and atmospheric background. In: Böhm J, Schuh H (eds) Atmospheric effects in space geodesy. Springer, Berlin, pp 73–136

    Chapter  Google Scholar 

  • Brunner F, Rüeger J (1992) Theory of the local scale parameter method for EDM. Bulletin Géodésique 66:355–364

    Article  Google Scholar 

  • Crewell S, Mech M, Reinhardt T, Selbach S, Betz HD, Brocard E, Dick G, O’Connor EJ, Fischer J, Hanisch T, Hauf T, Huenerbein A, Delobbe L, Mathes A, Peters G, Wernli H, Wiegner M, Wulfmeyer V (2008) The general observation period 2007 within the priority program on quantitative precipitation forecasting: concept and first results. Meteorologische Zeitschrift 17(6):849–866

    Article  Google Scholar 

  • Davis JL, Herring TA, Shapiro II, Rogers AEE, Elgered G (1985) Geodesy by radio interferometry—effects of atmospheric modeling errors on estimates of baseline length. Radio Sci 20(6):1593–1607. https://doi.org/10.1029/RS020i006p01593

    Article  Google Scholar 

  • De Boor C (1978) A practical guide to splines, applied mathematical sciences, vol 27. Springer, Heidelberg

    Book  Google Scholar 

  • Dousa J, Bennitt GV (2013) Estimation and evaluation of hourly updated global GPS zenith total delays over ten months. GPS Solut 17(4):453–464. https://doi.org/10.1007/s10291-012-0291-7

    Article  Google Scholar 

  • Dick G, Gendt G, Reigber C (2001) First experience with near real-time water vapor estimation in a German GPS network. J Atmos Solar-Terr Phys 63:1295–1304

    Article  Google Scholar 

  • Drewes H, Kuglitsch F, Adám J, Rózsa S (2016) The geodesist’s handbook 2016, vol 90. Springer, Berlin

    Google Scholar 

  • Elgered GK (1982) Tropospheric wet path-delay measurements. IEEE Trans Antennas Propag 30(3):502–505

    Article  Google Scholar 

  • Fey AL, Gordon D, Jacobs CS, Ma C, Gaume RA, Arias EF, Bianco G, Boboltz DA, Böckmann S, Bolotin S, Charlot P, Collioud A, Engelhardt G, Gipson J, Gontier AM, Heinkelmann R, Kurdubov S, Lambert S, Lytvyn S, MacMillan DS, Malkin Z, Nothnagel A, Ojha R, Skurikhina E, Sokolova J, Souchay J, Sovers OJ, Tesmer V, Titov O, Wang G, Zharov V (2015) The second realization of the international celestial reference frame by very long baseline interferometry. Astron J 150(2):58. https://doi.org/10.1088/0004-6256/150/2/58

    Article  Google Scholar 

  • Gross R, Beutler G, Plag HP (2009) Integrated scientific and societal user requirements and functional specifications for the GGOS. In: Plag H, Pearlman M (eds) Global geodetic observing system. Springer, Berlin

    Google Scholar 

  • Halsig S, Artz T, Iddink A, Nothnagel A (2016) Using an atmospheric turbulence model for the stochastic model of geodetic VLBI data analysis. Earth Planets Space 68:106. https://doi.org/10.1186/s40623-016-0482-5

    Article  Google Scholar 

  • Halsig S, Corbin A, Iddink A, Jaron F, Schubert T, Nothnagel A (2017) Current development progress in ivg::ASCOT—a new VLBI analysis software. In: Proceedings of the 23nd European VLBI group for geodesy and astrometry working meeting, Gothenburg, Sweden, 15–19 May 2017, pp 167–171

  • Hase H, Petrov L (1999) The first campaign of observations with the VLBI-module of TIGO. In: Schlüter W, Hase H (eds) Proceedings of the 13th Working Meeting on European VLBI for Geodesy and Astrometry, 12–13 February 1999, Viechtach/Wettzell, Bundesamt für Kartographie und Geodäsie, pp 19–24

  • Heinkelmann R, Böhm J, Bolotin S, Engelhardt G, Haas R, Lanotte R, MacMillan DS, Negusini M, Skurikhina E, Titov O, Schuh H (2011) VLBI-derived tropospheric parameters during CONT08. J Geodesy 85:377–393. https://doi.org/10.1007/s00190-011-0459-x

    Article  Google Scholar 

  • IVS Master files (2018) International VLBI service for geodesy and astrometry, multi-agency schedule files. https://ivscc.gsfc.nasa.gov/program/master.html. Accessed 12 Jan 2018

  • Kermarrec G, Schön S (2014) On the Mátern covariance family: a proposal for modeling temporal correlations based on turbulence theory. J Geodesy 88(11):1061–1079. https://doi.org/10.1007/s00190-014-0743-7

    Article  Google Scholar 

  • Koch KR (2013) Parameter estimation and hypothesis testing in linear models. Springer, Berlin

    Google Scholar 

  • Kodet J, Panek P, Prochazka I (2016a) Two-way time transfer via optical fiber providing subpicosecond precision and high temperature stability. Metrologia 53:18–26

    Article  Google Scholar 

  • Kodet J, Schreiber U, Panek P, Prochazka I, Männel B, Schüler T (2016b) Optical two-way timing system for space geodesy applications. In: 2016 European frequency and time forum, 4–7 April 2016, York, UK

  • Kodet J, Schreiber U, Eckl J, Plötz C, Mähler S, Schüler T, Klügel T, Riepl S (2018) Co-location of space geodetic techniques carried out at the Geodetic Observatory Wettzell using a closure in time and a multi-technique reference target. J Geodesy. https://doi.org/10.1007/s00190-017-1105-z

    Google Scholar 

  • Kolmogorov A (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Akademiia Nauk SSSR Doklady 30:301–305

    Google Scholar 

  • MacMillan DS (1997) Atmospheric gradients from very long baseline interferometry observations. Geophys Res Lett 22(9):1041–1044. https://doi.org/10.1029/95gl00887

    Article  Google Scholar 

  • Martí-Vidal I, Krichbaum T, Marscher A, Alef W, Bertarini A, Bach U, Schinzel F, Rottmann H, Anderson J, Zensus J, Bremer M, Sanchez S, Lindqvist M, Mujunen A (2012) On the calibration of full-polarization 86 GHz global VLBI observations. Astron Astrophys 542:A107. https://doi.org/10.1051/0004-6361/201218958

    Article  Google Scholar 

  • Matérn B (1960) Spatial variation—stochastic models and their application to some problems in forest survey and other sampling investigations. Meddelanden Från Statens Skogsforskningsinstitut

  • Niell A (2015) Status report on the GGAO-Westford VGOS systems. In: Haas R, Colomer F (eds) Proceedings of the 22th working meeting on European VLBI for geodesy and astrometry, 18–21 May 2015, Ponta Delgada, pp 80–84

  • Niell A, Beaudoin C, Cappallo R, Corey B, Titus M (2013) First results with the GGAO12M VGOS System. In: Zubko N, Poutanen M (eds) Proceedings of the 21th working meeting on European VLBI for geodesy and astrometry, March 5–8, 2013, Espoo, Finland, Reports of the Finnish Geodetic Institute, pp 29–32

  • Niell A, Beaudoin C, Bolotin S, Cappallo R, Corey B, Gipson J, Gordon D, McWhirter R, Ruszczyk C, SooHoo J (2014) VGOS operations and geodetic results. In: Behrend D, Baver KD, Armstrong K (eds) IVS 2014 general meeting proceedings, “VGOS: the new VLBI network”, 2–7 March 2014, Shanghai, China. Science Press (Beijing), pp 97–101. ISBN 978-7-03-042974-2

  • Niell A, Cappallo R, Corey B, Eckert C, Elosegui P, McWhirter R, Rajagopalan G, Ruszczyk C, Titus M (2016) VGOS observations with Westford, GGAO, and the new station at Kokee, Hawaii. In: Behrend, D, Baver KD, Armstrong K (eds) IVS 2016 general meeting proceedings, “New horizons with VGOS”, Johannesburg, South Africa, March 13–19 2016, pp 44–48

  • Nilsson T, Davis JL, Hill EM (2009) Using ground-based GPS to characterize atmospheric turbulence. Geophys Res Lett 36:L16807. https://doi.org/10.1029/2009GL040090

    Article  Google Scholar 

  • Nothnagel A, Vennebusch M, Campbell J (2002) On correlations between parameters in geodetic VLBI data analysis. In: Vandenberg NR, Baver KD (eds) IVS 2002 general meeting proceedings, Tsukuba, Japan, February 4–7 2002, pp 260–264

  • Nothnagel A, International VLBI Service for Geodesy and Astrometry (IVS) (2015) The IVS data input to ITRF2014. International VLBI Service for Geodesy and Astrometry. GFZ Data Services. https://doi.org/10.5880/GFZ.1.1.2015.002

  • Nothnagel A, Artz T, Behrend D, Malkin Z (2016) International VLBI service for geodesy and astrometry Delivering high-quality products and embarking on observations of the next generation. J Geodesy. https://doi.org/10.1007/s00190-016-0950-5

    Google Scholar 

  • Nothnagel A, Holst C, Haas R (2018) A VLBI delay model for gravitational deformations of the Onsala 20 m radio telescope (in preparation)

  • Pánek P, Kodet J, Procházka I (2013) Accuracy of two-way time transfer via a single coaxial cable. Metrologia 50(1):60

    Article  Google Scholar 

  • Pany A, Böhm J, MacMillan D, Schuh H, Nilsson T, Wresnik J (2011) Monte Carlo simulations of the impact of troposphere, clock and measurement errors on the repeatability of VLBI positions. J Geodesy 85(1):39–50. https://doi.org/10.1007/s00190-010-0415-1

    Article  Google Scholar 

  • Petit G, Luzum B (2010) IERS conventions 2010. IERS Technical Note 35, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main. ISSN: 1019-4568

  • Petrachenko, B, Niell A, Behrend D, Corey B, Böm J, Charlot P, Collioud A, Gipson J, Haas R, Hobiger T, Koyama Y, MacMillan D, Malkin Z, Nilsson T, Pany A, Tuccari G, Whitney A, Wresnik J (2008) Design aspects of the VLBI2010 system: progress report of the IVS VLBI2010 committee. In: Behrend D, Baver K (eds) IVS 2008 Annual Report. NASA/TP-2009-214183, pp 13–67

  • Ray J, Corey B (1991) Current precision of VLBI multi-band delay observables. In: Proceedings of the AGU chapman conference on geodetic VLBI: monitoring global change, NOAA Technical Report NOS 137 NGS 49. April 22–26, 1991, Washington, D.C., USA, pp 123–134

  • Schön S, Brunner F (2008) A proposal for modelling physical correlations of GPS phase observations. J Geodesy 82(10):601–612. https://doi.org/10.1007/s00190-008-0211-3

    Article  Google Scholar 

  • Schüler T, Kronschnabel G, Plötz C, Neidhardt A, Bertarini A, Bernhart S, la Porta L, Halsig S, Nothnagel A (2015) Initial results obtained with the first twin VLBI radio telescope at the geodetic observatory wettzell. Sensors 15(8):18,767–18,800. https://doi.org/10.3390/s150818

    Article  Google Scholar 

  • Sovers OJ, Fanselow JL, Jacobs CS (1998) Astrometry and geodesy with radio interferometry: experiments, models, results. Rev Mod Phys 70(4):1393–1454. https://doi.org/10.1103/RevModPhys.70.1393

    Article  Google Scholar 

  • Taylor GI (1938) The spectrum of turbulence. Proc R Soc Lond A Math Phys Eng Sci 164(919):476–490. https://doi.org/10.1098/rspa.1938.0032

    Article  Google Scholar 

  • Teke K, Nilsson T, Böhm B, Hobiger T, Steigenberger P, García-Espada S, Haas R, Willis P (2013) Troposphere delays from space geodetic techniques, water vapor radiometers, and numerical weather models over a series of continuous VLBI campaigns. J Geodesy 87(10–12):981–1001. https://doi.org/10.1007/s00190-013-0662-z

    Article  Google Scholar 

  • Thompson A, Moran J, Swenson G Jr (2001) Interferometry and synthesis in radio astronomy. Wiley, Hoboken

    Book  Google Scholar 

  • Vennebusch M, Schön S, Weinbach U (2011) Temporal and spatial stochastic behaviour of high-frequency slant tropospheric delays from simulations and real GPS data. Adv Space Res 47:1681–1690

    Article  Google Scholar 

  • Wheelon AD (2004) Electromagnetic scintillation, vol 1. Cambridge University Press, Cambridge

    Google Scholar 

  • Whitney AR (1974) Precision geodesy and astrometry via very-long-baseline interferometry. Ph.D. Thesis, MIT, Cambridge MA, USA

  • Whitney AR (2000) How do VLBI correlators work? In: Vandenberg NR, Baver KD (eds) IVS 2000 general meeting proceedings, Kötzting, Germany, February 21–24 2000, pp 187–205

Download references

Acknowledgements

Sebastian Halsig thanks the German Research Foundation (Deutsche Forschungsgemeinschaft) for its financial support (No. 318/10-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Halsig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halsig, S., Bertarini, A., Haas, R. et al. Atmospheric refraction and system stability investigations in short-baseline VLBI observations. J Geod 93, 593–614 (2019). https://doi.org/10.1007/s00190-018-1184-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-018-1184-5

Keywords

Navigation