Skip to main content

Advertisement

Log in

The gravity field model IGGT_R1 based on the second invariant of the GOCE gravitational gradient tensor

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Based on tensor theory, three invariants of the gravitational gradient tensor (IGGT) are independent of the gradiometer reference frame (GRF). Compared to traditional methods for calculation of gravity field models based on the gravity field and steady-state ocean circulation explorer (GOCE) data, which are affected by errors in the attitude indicator, using IGGT and least squares method avoids the problem of inaccurate rotation matrices. The IGGT approach as studied in this paper is a quadratic function of the gravity field model’s spherical harmonic coefficients. The linearized observation equations for the least squares method are obtained using a Taylor expansion, and the weighting equation is derived using the law of error propagation. We also investigate the linearization errors using existing gravity field models and find that this error can be ignored since the used a-priori model EIGEN-5C is sufficiently accurate. One problem when using this approach is that it needs all six independent gravitational gradients (GGs), but the components \(V_{xy}\) and \(V_{yz}\) of GOCE are worse due to the non-sensitive axes of the GOCE gradiometer. Therefore, we use synthetic GGs for both inaccurate gravitational gradient components derived from the a-priori gravity field model EIGEN-5C. Another problem is that the GOCE GGs are measured in a band-limited manner. Therefore, a forward and backward finite impulse response band-pass filter is applied to the data, which can also eliminate filter caused phase change. The spherical cap regularization approach (SCRA) and the Kaula rule are then applied to solve the polar gap problem caused by GOCE’s inclination of \(96.7^{\circ }\). With the techniques described above, a degree/order 240 gravity field model called IGGT_R1 is computed. Since the synthetic components of \(V_{xy}\) and \(V_{yz}\) are not band-pass filtered, the signals outside the measurement bandwidth are replaced by the a-priori model EIGEN-5C. Therefore, this model is practically a combined gravity field model which contains GOCE GGs signals and long wavelength signals from the a-priori model EIGEN-5C. Finally, IGGT_R1’s accuracy is evaluated by comparison with other gravity field models in terms of difference degree amplitudes, the geostrophic velocity in the Agulhas current area, gravity anomaly differences as well as by comparison to GNSS/leveling data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barthelmes F (2009) Calculation service ICGEM. http://icgem.gfz-potsdam.de

  • Barthelmes F, Förste C (2011) The ICGEM-format. Potsdam: GFZ German Research Centre for Geosciences, Department 1

  • Baur O, Sneeuw N, Grafarend EW (2008) Methodology and use of tensor invariants for satellite gravity gradiometry. J Geod 82(4–5):279–293

    Article  Google Scholar 

  • Bouman J, Fuchs MJ (2012) GOCE gravity gradients versus global gravity field models. Geophys J Int 189(2):846–850

    Article  Google Scholar 

  • Bouman J, Fiorot S, Fuchs M, Gruber T, Schrama E, Tscherning C, Veicherts M, Visser P (2011) GOCE gravitational gradients along the orbit. J Geod 85(11):791–805

    Article  Google Scholar 

  • Bruinsma S, Marty J, Balmino G, Biancale R, Foerste C, Abrikosov O, Neumayer H (2010a) GOCE gravity field recovery by means of the direct numerical method. In: Paper presented at the ESA living planet symposium, European Space Agency, Bergen Norway, June pp 28–2

  • Bruinsma SL, Förste C, Abrikosov O, Lemoine JM, Marty JC (2010b) ESAs GOCE gravity field model from the direct approach release 2. ICGEM data base at GFZ Potsdam. http://icgem.gfz-potsdam.de/icgem/icgem.html

  • Bruinsma SL, Förste C, Abrikosov O, Lemoine JM, Marty JC, Mulet S, Rio MH, Bonvalot S (2014) ESA’s satellite-only gravity field model via the direct approach based on all GOCE data. Geophys Res Lett 41(21):7508–7514

    Article  Google Scholar 

  • Catastini G, Cesare S, De Sanctis S, Dumontel M, Parisch M, Sechi G (2006) Predictions of the GOCE in-flight performances with the end-to-end system simulator. In: Proceedings of the 3rd international GOCE user workshop, pp 6–8

  • Chandra R (2001) Parallel programming in OpenMP. Morgan kaufmann, Burlington

    Google Scholar 

  • Chapman B, Jost G, Van Der Pas R (2008) Using OpenMP: portable shared memory parallel programming, vol 10. MIT Press, Cambridge

    Google Scholar 

  • Colombo OL (1981) Numerical methods for harmonic analysis on the sphere. Technicl report, DTIC Document

  • Courant R, John F (2012) Introduction to calculus and analysis, vol 1. Springer, Berlin

    Google Scholar 

  • Förste C, Flechtner F, Schmidt R, Stubenvoll R, Rothacher M, Kusche J, Neumayer KH, Biancale R, Lemoine JM, Barthelmes F, Bruinsma J, König R, Meyer U (2008) EIGEN-GL05C-A new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation. In: Geophysical research abstracts, vol 10, pp EGU2008–A

  • Förste C, Bruinsma S, Abrikosov O, Lemoine J, Marty J, Flechtner F, Balmino G, Barthelmes F, Biancale RE (2015a) EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ data services. http://doiorg/105880/icgem20151

  • Förste C, Bruinsma S, Rudenko S, Abrikosov O, Lemoine JM, Marty JC, Neumayer H, Biancale R (2015b) EIGEN-6S4: a time-variable satellite-only gravity field model to d/o 300 based on LAGEOS, GRACE and GOCE data from the collaboration of GFZ Potsdam and GRGS Toulouse. In: EGU general assembly conference abstracts, vol 17, p 3608

  • Fuchs MJ, Bouman J (2011) Rotation of GOCE gravity gradients to local frames. Geophys J Int 187(2):743–753

    Article  Google Scholar 

  • Gropp W, Lusk E, Skjellum A (1999) Using MPI: portable parallel programming with the message-passing interface, vol 1. MIT Press, Cambridge

    Google Scholar 

  • Gruber T, Rummel R, Abrikosov O, van Hees R (2010) GOCE level 2 product data handbook. Technical report, GO-MA-HPF-GS-0110

  • Heiskanen WA, Moritz H (1967) Physical geodesy. Bull Géod 86(1):491–492

    Article  Google Scholar 

  • Holota P (1989) Boundary value problems and invariants of the gravitational tensor in satellite gradiometry. In: Theory of satellite geodesy and gravity field determination, Springer, pp 447–457

  • Ihde J, Adam J, Gurtner W, Harsson B, Sacher M, Schlüter W, Wöppelmann G (2002) The height solution of the European vertical reference network (EUVN), Mitteilungen des BKG, Bd. 25, EUREF Publication No. 11/I, Frankfurt a. M, Germany pp 53–79

  • Klees R, Koop R, Visser P, Van den Ijssel J (2000) Efficient gravity field recovery from GOCE gravity gradient observations. J Geod 74(7–8):561–571

    Article  Google Scholar 

  • Knudsen P, Benveniste J (2011) GOCE user toolbox and tutorial. In: Proceedings of the 4th international GOCE user workshop, European Space Agency, ESA Publication SP-696, 4p Munich

  • Knudsen P, Bingham R, Andersen O, Rio MH (2011) A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model. J Geod 85(11):861–879

    Article  Google Scholar 

  • Koop R (1993) Globel gravity field modeling using satellite gravity gradiometry. Publications on Geodesy, vol 38

  • Li J, Jiang W, Zou X, Xu X, Shen W (2014) Evaluation of recent GRACE and GOCE satellite gravity models and combined models using GPS/leveling and gravity data in china. In: Gravity, geoid and height systems, Springer, pp 67–74

  • Mayrhofer R, Pail R, Fecher T (2010) Quick-look gravity field solution as part of the GOCE quality assessment. In: Proceedings of the ESA living planet symposium, vol 28

  • Metzler B, Pail R (2005) GOCE data processing: the spherical cap regularization approach. Stud Geophys Geod 49(4):441–462

    Article  Google Scholar 

  • Migliaccio F, Reguzzoni M, Sansò F (2004) Space-wise approach to satellite gravity field determination in the presence of coloured noise. J Geod 78(4–5):304–313

    Article  Google Scholar 

  • Migliaccio F, Reguzzoni M, Gatti A, Sansò F, Herceg M (2011) A GOCE-only global gravity field model by the space-wise approach. In: 4th international GOCE user workshop

  • Milbert DG (1998) Documentation for the GPS benchmark data set of 23-July-98. IGES Bull 8:29–42

    Google Scholar 

  • Pacheco PS (1997) Parallel programming with MPI. Morgan Kaufmann, Burlington

    Google Scholar 

  • Pail R, Plank G (2002) Assessment of three numerical solution strategies for gravity field recovery from GOCE satellite gravity gradiometry implemented on a parallel platform. J Geod 76(8):462–474

    Article  Google Scholar 

  • Pail R, Schuh WD, Wermuth M (2005) GOCE gravity field processing. In: Gravity, geoid and space missions, Springer, pp 36–41

  • Pail R, Bruinsma S, Migliaccio F, Förste C, Goiginger H, Schuh WD, Höck E, Reguzzoni M, Brockmann JM, Abrikosov O, Martin V, Thomas F, Reinhard M, Ina K, Fernando S, Carl CT (2011) First GOCE gravity field models derived by three different approaches. J Geod 85(11):819–843

    Article  Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res Solid Earth 117(B4)

  • Rapp RH (1973) Improved models for potential coefficients and anomaly degree variances. J Geophys Res 78(17):3497–3500

    Article  Google Scholar 

  • Reguzzoni M, Tselfes N (2009) Optimal multi-step collocation: application to the space-wise approach for GOCE data analysis. J Geod 83(1):13–29

    Article  Google Scholar 

  • Reigber C (1989) Gravity field recovery from satellite tracking data. In: Theory of satellite geodesy and gravity field determination, Springer, pp 197–234

  • Rummel R (1993) On the principles and prospects of gravity field determination by satellite methods. In: Geodesy and physics of the earth, Springer, pp 67–70

  • Rummel R, Colombo O (1985) Gravity field determination from satellite gradiometry. Bull Géod 59(3):233–246

    Article  Google Scholar 

  • Rummel R, Yi W, Stummer C (2011) GOCE gravitational gradiometry. J Geod 85(11):777–790

    Article  Google Scholar 

  • Sacerdote F, Sansò F (1989) Some problems related to satellite gradiometry. Bull Géod 63(4):405–415

    Article  Google Scholar 

  • Schuh WD (1996) Tailored numerical solution strategies for the global determination of the Earth’s gravity field. Mitteilungen der geodtischen Institute der Technischen Universitt Graz, Folge 81, Graz

  • Schuh WD (2003) The processing of band-limited measurements; filtering techniques in the least squares context and in the presence of data gaps. In: Earth gravity field from space from sensors to earth sciences, Springer, pp 67–78

  • Taylor B (1717) Methodus incrementorum directa & inversa. Inny

  • Teunissen PJ (2000) Adjustment theory: an introduction. Delft University Press, Delft

    Google Scholar 

  • Vermeer M (1990) Observable quantities in satellite gradiometry. Bull Géod 64(4):347–361

    Google Scholar 

  • Wan XY, Yu JH, Zeng YY (2012) Frequency analysis and filtering processing of gravity gradient data from GOCE. Chin J Geophys 55(5):530–538

    Article  Google Scholar 

  • Yi W (2012) An alternative computation of a gravity field model from GOCE. Adv Space Res 50(3):371–384

    Article  Google Scholar 

  • Yu J, Zhao D (2010) The gravitational gradient tensors invariants and the related boundary conditions. Sci China Earth Sci 53(5):781–790

    Article  Google Scholar 

  • Yu J, Wan X (2013) Recovery of the gravity field from GOCE data by using the invariants of gradient tensor. Sci China Earth Sci 56(7):1193–1199

    Article  Google Scholar 

  • Zhang C, Guo C, Chen J, Zhang L, Wang B (2009) EGM2008 and its application analysis in Chinese Mainland. Acta Geod Cartogr Sin 38(4):283–289

    Google Scholar 

Download references

Acknowledgements

Thanks for the constructive comments and beneficial suggestions from the anonymous reviewers and editors, which help us a lot for improving this manuscript. We also would like to express appreciation to Dr. X.Y. Wan of Qian Xuesen Laboratory of Space Technology (QLST), Dr. O. Abrykosov of German Research Centre for Geosciences (GFZ) and Dr. J. Bouman of German Geodetic Research Institute (DGFI) for their kind help and discussions. Thanks for the European Space Agency for providing the GOCE data. This study is supported by the Chinese Scholarship Council (No. 201506270158), the Natural Science Foundation of China (Nos. 41104014, 41131067, 41374023, 41474019 and 41504013) and the Key Laboratory of Geospace Environment and Geodesy, Ministry Education, Wuhan University (No. 16-02-07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, B., Luo, Z., Zhong, B. et al. The gravity field model IGGT_R1 based on the second invariant of the GOCE gravitational gradient tensor. J Geod 92, 561–572 (2018). https://doi.org/10.1007/s00190-017-1089-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-017-1089-8

Keywords

Navigation