Skip to main content
Log in

On the importance of intra-frame and inter-frame covariances in frame transformation theory

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The coordinate frame transformation (CFT) problem in geodesy is typically solved by a stepwise approach which entails both inverse and forward treatment of the available data. The unknown transformation parameters are first estimated on the basis of common points given in both frames, and subsequently they are used for transforming the coordinates of other (new) points from their initial frame to the desired target frame. Such an approach, despite its rational reasoning, does not provide the optimal accuracy for the transformed coordinates as it overlooks the stochastic correlation (which often exists) between the common and the new points in the initial frame. In this paper we present a single-step least squares approach for the rigorous solution of the CFT problem that takes into account both the intra-frame and inter-frame coordinate covariances in the available data. The optimal estimators for the transformed coordinates are derived in closed form and they involve appropriate corrections to the standard estimators of the stepwise approach. Their practical significance is evaluated through numerical experiments with the 3D Helmert transformation model and real coordinate sets obtained from weekly combined solutions of the EUREF Permanent Network. Our results show that the difference between the standard approach and the optimal approach can become significant since the magnitude of the aforementioned corrections remains well above the statistical accuracy of the transformation results that are obtained by the standard (stepwise) solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. According to this theorem (Koch 1999, pp. 156–158) the BLUE of a linear function \(\mathbf{q}=\mathbf{Q} \varvec{\uptheta }+\mathbf{c}\) of a parameter vector is given by \({\hat{\mathbf{q}}}=\mathbf{Q} {\hat{\varvec{\uptheta }}}+\mathbf{c}\), where \({\hat{\varvec{\uptheta }}}\) is the BLUE of the parameter vector while Q and c are fixed (deterministic) quantities. The transformed coordinates in Eq. (17), on the other hand, have the form \({\hat{\mathbf{q}}}=\mathbf{Q} {\hat{\varvec{\uptheta }}}+\mathbf{c'}\), where \(\mathbf{c'}\) corresponds to an observed vector which is correlated with the parameter estimator.

  2. These identities are directly obtained from the general matrix property (e.g. Blewitt 1998, p. 248) \(({\varvec{\Lambda }}_1 \pm {\varvec{\Lambda }}_{12} {\varvec{\Lambda }}_2^{-1} {\varvec{\Lambda }}_{12}^T)^{-1}={\varvec{\Lambda }}_1^{-1} \mp {\varvec{\Lambda }}_1^{-1} {\varvec{\Lambda }}_{12}{({\varvec{\Lambda }}_2 \pm {\varvec{\Lambda }}_{12}^T {\varvec{\Lambda }}_1^{-1} {\varvec{\Lambda }}_{12})}^{-1}{\varvec{\Lambda }}_{12}^T {\varvec{ \Lambda }}_1^{-1}\) by substituting \({\varvec{\Lambda }}_1 =\mathbf{A},\,{\varvec{\Lambda }}_2^{-1} =\mathbf{B}\) and \({\varvec{\Lambda }}_{12} ={\varvec{\Lambda }}_{12}^T =\mathbf{I}\).

References

  • Altamimi Z (2003) Discussion on how to express a regional GPS solution in the ITRF. EUREF Publication No. 12, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main, pp 162–167

  • Altamimi Z, Boucher C, Sillard P (2002) New trends for the realization of the international terrestrial reference system. Adv Space Res 30:175–184

    Article  Google Scholar 

  • Bevis M, Brown A (2014) Trajectory models and reference frames for crustal motion geodesy. J Geod 88:283–311

    Article  Google Scholar 

  • Blewitt G (1998) GPS data processing methodology. In: Teunissen PJG, Kleusberg A (eds) GPS for Geodesy, 2nd edition. Springer, Berlin, pp 231–270

    Chapter  Google Scholar 

  • Gibbs B (2011) Advanced Kalman filtering, least-squares and modelling: a practical handbook. Wiley, New York

    Book  Google Scholar 

  • Koch K-R (1999) Parameter estimation and hypothesis testing in linear models, 2nd edition. Springer, Berlin

    Book  Google Scholar 

  • Leick A, van Gelder BHW (1975) On similarity transformations and geodetic network distortions based on Doppler satellite observations. Technical Report No. 235, Department of Geodetic Science, Ohio State University, Columbus, Ohio

  • Mahboub V (2012) On weighted total least squares for geodetic transformation. J Geod 86:359–367

    Article  Google Scholar 

  • Petit G, Luzum B (eds) (2010) Internation earth rotation and reference systems service (IERS) conventions. IERS Technical Note No. 36, Verlag des Bundesamts fur Kartographie und Geodäsie, Frankfurt am Main

  • Schaffrin B, Wieser A (2008) On weighted total least squares adjustment for linear regression. J Geod 82:415–421

    Article  Google Scholar 

  • Schwarz K-P (1974) Combination of spatial networks using an estimated covariance matrix. Bull Geod 112(1):171–186

    Article  Google Scholar 

  • Sillard P, Boucher C (2001) A review of algebraic constraints in terrestrial reference frame datum definition. J Geod 75:63–73

    Article  Google Scholar 

  • Soler T (1998) A compendium of transformation formulae useful for GPS work. J Geod 72:482–490

    Article  Google Scholar 

  • Tregoning P, van Dam T (2005) Effects of atmospheric pressure loading and seven-parameter transformations on estimates of geocenter motion and station heights from space geodetic observations. J Geoph Res 110:B03408. doi:10.1029/2004JB003334

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Kotsakis.

Appendix

Appendix

The BLUE estimators related to the solution of the geodetic CFT problem are analytically derived in this appendix. Our proof scheme considers the most general case of the problem by taking into account both the intra-frame and inter-frame covariances in the coordinate datasets. The optimal transformation formulae given in Sect. 3 [see e.g. Eq. (39)] stem directly as special cases of the following derivations.

Let us first express the system of observation equations from Eqs. (55)–(58) in the equivalent algebraic form

$$\begin{aligned} \mathbf{X}-\mathbf{X'}&= \mathbf{G} \varvec{\uptheta }+\mathbf{v}_{\mathbf{X}-\mathbf{X'}} \end{aligned}$$
(65)
$$\begin{aligned} \mathbf{X}&= \mathbf{x} + \mathbf{v}_\mathbf{X}\end{aligned}$$
(66)
$$\begin{aligned} \mathbf{Y}&= \mathbf{y} + \mathbf{v}_\mathbf{Y} \end{aligned}$$
(67)
$$\begin{aligned} \mathbf{Z'}&= \mathbf{z} - {\tilde{\mathbf{G}}} \varvec{\uptheta }+\mathbf{v}_\mathbf{Z'} \end{aligned}$$
(68)

Using block-matrix notation the above system can be written as

(69)

or, in a more compact form

$$\begin{aligned} \left[ \begin{array}{c} {\varvec{\updelta }}\mathbf{X} \\ {\varvec{\Xi }} \\ \end{array}\right] = \left[ {{\begin{array}{c@{\quad }c} \mathbf{G}&{} \mathbf{0} \\ \mathbf{K}&{} \mathbf{I} \\ \end{array}}}\right] \left[ {{\begin{array}{c} \varvec{\uptheta } \\ {\varvec{\upxi }} \\ \end{array}}}\right] +\left[ {{\begin{array}{c} \mathbf{v}_{{\varvec{\updelta }\mathbf{X}}}\\ \mathbf{v}_{\varvec{\Xi }} \\ \end{array}}}\right] \end{aligned}$$
(70)

The meaning of all auxiliary terms in the last equation is deduced from (69). The data weight matrix that is associated with the above system has the general form

$$\begin{aligned} \mathbf{P} = \left[ \begin{array}{c@{\quad }c} {\mathbf{P}_1}&{} {\mathbf{P}_{12}} \\ {\mathbf{P}_{12}^T}&{} {\mathbf{P}_2} \\ \end{array}\right] = \left[ \begin{array}{c@{\quad }c} {\varvec{\Sigma }_{{\varvec{\updelta }}\mathbf{X}}}&{} {\varvec{\Sigma }_{{\varvec{\updelta }}\mathbf{X},\varvec{\Xi }}} \\ {\varvec{\Sigma }_{{\varvec{\updelta }\mathbf{X},\varvec{\Xi }}}^T}&{} {\varvec{\Sigma }}_{\varvec{\Xi }} \\ \end{array}\right] ^{ -1} \end{aligned}$$
(71)

where

$$\begin{aligned}&\varvec{\Sigma }_{\varvec{\updelta }\mathbf{X}} = \varvec{\Sigma }_\mathbf{X} +\varvec{\Sigma }_\mathbf{X'} -\varvec{\Sigma }_{\mathbf{XX'}} -\varvec{\Sigma }_{\mathbf{XX'}}^T \end{aligned}$$
(72)
$$\begin{aligned}&\varvec{\Sigma }_{\varvec{\updelta }\mathbf{X},\varvec{\Xi }} = \left[ \begin{array}{l@{\quad }l@{\quad }l} {\varvec{\Sigma }_{\varvec{\updelta }\mathbf{X},\mathbf{X}}}&{} {\varvec{\Sigma }_{\varvec{\updelta }\mathbf{X},\mathbf{Y}}}&{} {\varvec{\Sigma }_{\varvec{\updelta }\mathbf{X},\mathbf{Z'}}} \\ \end{array}\right] \end{aligned}$$
(73)
$$\begin{aligned} \varvec{\Sigma }_{\varvec{\Xi }}&= \left[ \begin{array}{c@{\quad }c@{\quad }c} {\varvec{\Sigma }_\mathbf{X}}&{} {\varvec{\Sigma }_{\mathbf{XY}}}&{} {\varvec{\Sigma }_{\mathbf{X{Z}'}}} \\ {\varvec{\Sigma }_{\mathbf{YX}}}&{} {\varvec{\Sigma }_\mathbf{Y}}&{} {\varvec{\Sigma }_{\mathbf{Y{Z}'}}} \\ {\varvec{\Sigma }_{\mathbf{{Z}'X}}}&{} {\varvec{\Sigma }_{\mathbf{{Z}'Y}}}&{} {\varvec{\Sigma }_\mathbf{Z'}} \\ \end{array}\right] \end{aligned}$$
(74)

Using elementary covariance propagation rules, we may express the submatrices of the auxiliary cross-CV matrix \(\varvec{\Sigma }_{\varvec{\updelta }\mathbf{X},\varvec{\Xi }} \) in terms of the relationships

$$\begin{aligned} \varvec{\Sigma }_{\varvec{\updelta }\mathbf{X},\mathbf{X}}&= \varvec{\Sigma }_\mathbf{X} - \varvec{\Sigma }_\mathbf{{X'X}}\end{aligned}$$
(75)
$$\begin{aligned} \varvec{\Sigma }_{\varvec{\updelta }\mathbf{X},\mathbf{Y}}&= \varvec{\Sigma }_{\mathbf{XY}} - \varvec{\Sigma }_\mathbf{{X'Y}}\end{aligned}$$
(76)
$$\begin{aligned} \varvec{\Sigma }_{\varvec{\updelta }\mathbf{X},\mathbf{Z'}}&= \varvec{\Sigma }_{\mathbf{XZ'}} - \varvec{\Sigma }_{\mathbf{X'Z'}} \end{aligned}$$
(77)

The weighted LS adjustment of (70) leads to the normal equations system

$$\begin{aligned} \left[ {{\begin{array}{c@{\quad }c} {\mathbf{G}^{T}}&{} {\mathbf{K}^{T}} \\ \mathbf{0}&{} \mathbf{I} \\ \end{array}}}\right] \left[ {{\begin{array}{c@{\quad }c} {\mathbf{P}_1}&{} {\mathbf{P}_{12}} \\ {\mathbf{P}_{12}^T}&{} {\mathbf{P}_2} \\ \end{array}}}\right] \left[ {{\begin{array}{c@{\quad }c} \mathbf{G}&{} \mathbf{0} \\ \mathbf{K}&{} \mathbf{I} \\ \end{array}}}\right] \left[ {{\begin{array}{c} {{\hat{\varvec{\uptheta }}}} \\ {{\hat{{\varvec{ \upxi }}}}} \\ \end{array}}}\right] \nonumber \\ \quad = \left[ {{\begin{array}{c@{\quad }c} {\mathbf{G}^{T}}&{} {\mathbf{K}^{T}} \\ \mathbf{0}&{} \mathbf{I} \\ \end{array}}}\right] \left[ {{\begin{array}{c@{\quad }c} {\mathbf{P}_1}&{} {\mathbf{P}_{12}} \\ {\mathbf{P}_{12}^T}&{} {\mathbf{P}_2} \\ \end{array}}}\right] \left[ {{\begin{array}{c} {\varvec{\updelta }\mathbf{X}} \\ \varvec{\Xi } \\ \end{array}}}\right] \end{aligned}$$
(78)

from which we obtain the following equations for the optimal estimators \({\hat{\varvec{\uptheta }}}\) and \({\hat{{\varvec{\upxi }}}}\)

$$\begin{aligned}&\left( {\mathbf{G}^{T}\mathbf{P}_1 \mathbf{G}+\mathbf{K}^{T}\mathbf{P}_{12}^T \mathbf{G}+\mathbf{G}^{T}\mathbf{P}_{12} \mathbf{K}+\mathbf{K}^{T}\mathbf{P}_2 \mathbf{K}}\right) {\hat{\varvec{\uptheta }}} \nonumber \\&\qquad + \left( {\mathbf{G}^{T}\mathbf{P}_{12} +\mathbf{K}^{T}\mathbf{P}_2}\right) {\hat{{\varvec{\upxi }}}} \nonumber \\&\quad =\left( {\mathbf{G}^{T}\mathbf{P}_1 +\mathbf{K}^{T}\mathbf{P}_{12}^T}\right) \varvec{\updelta }\mathbf{X} + \left( {\mathbf{G}^{T}\mathbf{P}_{12} +\mathbf{K}^{T}\mathbf{P}_2}\right) \varvec{\Xi } \end{aligned}$$
(79)

and

$$\begin{aligned} \left( {\mathbf{P}_{12}^T \mathbf{G}+\mathbf{P}_2 \mathbf{K}}\right) {\hat{\varvec{\uptheta }}} + \mathbf{P}_2 {\hat{{\varvec{\upxi }}}} = \mathbf{P}_{12}^T \varvec{\updelta }\mathbf{X} + \mathbf{P}_2 \varvec{\Xi } \end{aligned}$$
(80)

Solving the last equation for \({\hat{{\varvec{\upxi }}}}\) we get

$$\begin{aligned} {\hat{{\varvec{\upxi }}}} = \mathbf{P}_2^{-1} \mathbf{P}_{12}^T \varvec{\updelta }\mathbf{X} + \varvec{\Xi } - \left( {\mathbf{P}_2^{-1} \mathbf{P}_{12}^T \mathbf{G}+\mathbf{K}}\right) {\hat{\varvec{\uptheta }}} \end{aligned}$$
(81)

and by substituting back to (79), and after several cancelations of similar terms, we end up with the relationship

$$\begin{aligned} \mathbf{G}^{T}\left( {\mathbf{P}_1 -\mathbf{P}_{12} \mathbf{P}_2^{-1} \mathbf{P}_{12}^T}\right) \mathbf{G} {\hat{\varvec{\uptheta }}} = \mathbf{G}^{T}\left( {\mathbf{P}_1 -\mathbf{P}_{12} \mathbf{P}_2^{-1} \mathbf{P}_{12}^T}\right) \varvec{\updelta }\mathbf{X}\nonumber \\ \end{aligned}$$
(82)

Taking into account from (71) that

$$\begin{aligned} \mathbf{P}_1 -\mathbf{P}_{12} \mathbf{P}_2^{-1} \mathbf{P}_{12}^T = \varvec{\Sigma }_{\varvec{\updelta }\mathbf{X}}^{-1} = \varvec{\Sigma }_{\mathbf{X}-\mathbf{X'}}^{-1} \end{aligned}$$
(83)

we finally obtain the optimal estimate of the frame transformation parameters

$$\begin{aligned} {\hat{\varvec{\uptheta }}} = \left( {\mathbf{G}^T \varvec{\Sigma }_{\mathbf{X}-\mathbf{X'}}^{-1} \mathbf{G}}\right) ^{-1}\mathbf{G}^T \varvec{\Sigma }_{\mathbf{X}-\mathbf{X'}}^{-1} (\mathbf{X}-\mathbf{X'}) \end{aligned}$$
(84)

Based again on (71) we have the useful formula

$$\begin{aligned} \mathbf{P}_2^{-1} \mathbf{P}_{12}^T = -\varvec{\Sigma }_{\varvec{\updelta }\mathbf{X},\varvec{\Xi }}^T \varvec{\Sigma }_{\varvec{\updelta }\mathbf{X}}^{-1} \end{aligned}$$
(85)

which can be substituted to (81), thus leading to the optimal estimate of the auxiliary vector \(\varvec{\xi }\) in terms of the expression

$$\begin{aligned} {\hat{{\varvec{\upxi }}}} = \varvec{\Xi } - \varvec{\Sigma }_{\varvec{\updelta }\mathbf{X},\varvec{\Xi }}^T \varvec{\Sigma }_{\varvec{\updelta }\mathbf{X}}^{-1} \left( {\varvec{\updelta }\mathbf{X}-{\mathbf{G}\hat{\varvec{{\uptheta }}}}}\right) - \mathbf{K}{\hat{\varvec{\uptheta }}} \end{aligned}$$
(86)

or, in the equivalent form

$$\begin{aligned}&\left[ {{\begin{array}{l} {{\hat{\mathbf{x}}}} \\ {{\hat{\mathbf{y}}}} \\ {{\hat{\mathbf{z}}}} \\ \end{array}}}\right] \!=\! \left[ \begin{array}{l} \mathbf{X} \\ \mathbf{Y} \\ \mathbf{Z'} \\ \end{array}\right] - \left[ \begin{array}{l} {\varvec{\Sigma }_{\varvec{\updelta }\mathbf{X},\mathbf{X}}^T} \\ {\varvec{\Sigma }_{\varvec{\updelta }\mathbf{X},\mathbf{Y}}^T} \\ {\varvec{\Sigma }_{\varvec{\updelta }\mathbf{X},\mathbf{Z'}}^T} \\ \end{array}\right] \varvec{\Sigma }_{\varvec{\updelta }\mathbf{X}}^{-1} \left( {\varvec{\updelta }\mathbf{X}-{\mathbf{G}\hat{\varvec{{\uptheta }}}}}\right) \!-\! \left[ \begin{array}{c} \mathbf{0} \\ \mathbf{0} \\ {-{\tilde{\mathbf{G}}}} \\ \end{array}\right] {\hat{\varvec{\uptheta }}}\nonumber \\ \end{aligned}$$
(87)

Using the covariance expressions from (75)–(77), the last equation is expressed as

$$\begin{aligned} \left[ {{\begin{array}{l} {{\hat{\mathbf{x}}}} \\ {{\hat{\mathbf{y}}}} \\ {{\hat{\mathbf{z}}}} \\ \end{array}}}\right] = \left[ {{\begin{array}{c} \mathbf{X} \\ \mathbf{Y} \\ {\mathbf{Z'}+{\tilde{\mathbf{G}}} {\hat{\varvec{\uptheta }}}} \\ \end{array}}}\right] \!-\! \left[ {{\begin{array}{c} {\varvec{\Sigma }_\mathbf{X} -{\varvec{\Sigma }}_{\mathbf{XX'}}} \\ {\varvec{\Sigma }_{\mathbf{YX}} -{\varvec{\Sigma }}_{\mathbf{Y{X}'}}} \\ {\varvec{\Sigma }_{\mathbf{{Z}'X}} -{\varvec{\Sigma }}_\mathbf{Z'X'}} \\ \end{array}}}\right] {\varvec{\Sigma }}_{\varvec{\updelta }\mathbf{X}}^{-1} \left( {\varvec{\updelta }\mathbf{X}\!-\!{\mathbf{G}\hat{\varvec{{\uptheta }}}}}\right) \nonumber \\ \end{aligned}$$
(88)

and, by taking into account (72), in the equivalent form

$$\begin{aligned}&\left[ {{\begin{array}{l} {{\hat{\mathbf{x}}}} \\ {{\hat{\mathbf{y}}}} \\ {{\hat{\mathbf{z}}}} \\ \end{array}}}\right] \nonumber \\&\quad = \left[ {{\begin{array}{c} \mathbf{X} \\ \mathbf{Y} \\ {\mathbf{Z'}+{\tilde{\mathbf{G}}} {\hat{\varvec{\uptheta }}}} \\ \end{array}}}\right] - \left[ \begin{array}{c} {\varvec{\Sigma }}_{\varvec{\updelta }\mathbf{X}} -{\varvec{\Sigma }}_\mathbf{X'} +{\varvec{\Sigma }}_{\mathbf{{X'X}}} \\ {\varvec{\Sigma }}_{\mathbf{YX}} -{\varvec{\Sigma }}_{\mathbf{YX'}} \\ {\varvec{\Sigma }}_{\mathbf{Z'X}} -{\varvec{\Sigma }}_\mathbf{Z'X'} \\ \end{array}\right] {\varvec{\Sigma }}_{\varvec{\updelta }\mathbf{X}}^{-1} \left( {\varvec{\updelta }\mathbf{X}-{\mathbf{G}\hat{\varvec{{\uptheta }}}}}\right) \nonumber \\ \end{aligned}$$
(89)

Considering that \(\varvec{\updelta }\mathbf{X}=\mathbf{X}-\mathbf{X'}\), equation (89) can be finally reduced to the form

$$\begin{aligned}&\left[ \begin{array}{c} {{\hat{\mathbf{x}}}} \\ {{\hat{\mathbf{y}}}} \\ {{\hat{\mathbf{z}}}} \\ \end{array}\right] \nonumber \\&\quad = \left[ \begin{array}{c} {\mathbf{X'}+\mathbf{G} {\hat{\varvec{\uptheta }}}} \\ \mathbf{Y} \\ {\mathbf{Z'}+{\tilde{\mathbf{G}}} {\hat{\varvec{\uptheta }}}} \\ \end{array}\right] + \left[ \begin{array}{c} {\varvec{\Sigma }}_\mathbf{X'} -{\varvec{\Sigma }}_{\mathbf{{X}'X}} \\ {\varvec{\Sigma }}_{\mathbf{YX'}} -{\varvec{\Sigma }}_{\mathbf{YX}} \\ {\varvec{\Sigma }}_\mathbf{Z'X'} -{\varvec{\Sigma }}_{\mathbf{{Z}'X}} \\ \end{array}\right] {\varvec{\Sigma }}_{\mathbf{X}-\mathbf{X'}}^{-1} \left( {\mathbf{X}-\mathbf{X'}-{\mathbf{G}\hat{\varvec{{\uptheta }}}}}\right) \nonumber \\ \end{aligned}$$
(90)

From the last equation we explicitly obtain the optimal estimates for the transformed coordinates from the initial frame to the target frame at the common and new points, respectively

$$\begin{aligned} {\hat{\mathbf{x}}}&= {\hat{\mathbf{x}}}^{\mathrm{st}} +\left( {\varvec{\Sigma }_\mathbf{X'} -\varvec{\Sigma }_{\mathbf{{X}'X}}}\right) \varvec{\Sigma }_{\mathbf{X}-\mathbf{X'}}^{-1} (\mathbf{X}-{\hat{\mathbf{x}}}^{\mathrm{st}})\end{aligned}$$
(91)
$$\begin{aligned} {\hat{\mathbf{z}}}&= {\hat{\mathbf{z}}}^{\mathrm{st}} +\left( {\varvec{\Sigma }_\mathbf{Z'X'} -{\varvec{\Sigma }}_{\mathbf{{{ Z}}'X}}}\right) {\varvec{\Sigma }}_{\mathbf{X}-\mathbf{X'}}^{-1} (\mathbf{X}-{\hat{\mathbf{x}}}^{\mathrm{st}}) \end{aligned}$$
(92)

and also the “updated” coordinates at the non-common reference points (in the target frame)

$$\begin{aligned} {\hat{\mathbf{y}}} = \mathbf{Y} +\left( {\varvec{\Sigma }_{\mathbf{Y{X}'}} -\varvec{\Sigma }_{\mathbf{YX}}}\right) {\varvec{\Sigma }}_{\mathbf{X}-\mathbf{X'}}^{-1} (\mathbf{X}-{\hat{\mathbf{x}}}^{\mathrm{st}}) \end{aligned}$$
(93)

Note that the terms \({\hat{\mathbf{x}}}^{\mathrm{st}}\) and \({\hat{\mathbf{z}}}^{\mathrm{st}}\) correspond to the transformed coordinates according to the standard stepwise CFT approach [see Eq. (17)].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotsakis, C., Vatalis, A. & Sansò , F. On the importance of intra-frame and inter-frame covariances in frame transformation theory. J Geod 88, 1187–1201 (2014). https://doi.org/10.1007/s00190-014-0753-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-014-0753-5

Keywords

Navigation