Skip to main content

Contribution of Starlette, Stella, and AJISAI to the SLR-derived global reference frame


The contribution of Starlette, Stella, and AJISAI is currently neglected when defining the International Terrestrial Reference Frame, despite a long time series of precise SLR observations and a huge amount of available data. The inferior accuracy of the orbits of low orbiting geodetic satellites is the main reason for this neglect. The Analysis Centers of the International Laser Ranging Service (ILRS ACs) do, however, consider including low orbiting geodetic satellites for deriving the standard ILRS products based on LAGEOS and Etalon satellites, instead of the sparsely observed, and thus, virtually negligible Etalons. We process ten years of SLR observations to Starlette, Stella, AJISAI, and LAGEOS and we assess the impact of these Low Earth Orbiting (LEO) SLR satellites on the SLR-derived parameters. We study different orbit parameterizations, in particular different arc lengths and the impact of pseudo-stochastic pulses and dynamical orbit parameters on the quality of the solutions. We found that the repeatability of the East and North components of station coordinates, the quality of polar coordinates, and the scale estimates of the reference are improved when combining LAGEOS with low orbiting SLR satellites. In the multi-SLR solutions, the scale and the \(Z\) component of geocenter coordinates are less affected by deficiencies in solar radiation pressure modeling than in the LAGEOS-1/2 solutions, due to substantially reduced correlations between the \(Z\) geocenter coordinate and empirical orbit parameters. Eventually, we found that the standard values of Center-of-mass corrections (CoM) for geodetic LEO satellites are not valid for the currently operating SLR systems. The variations of station-dependent differential range biases reach 52 and 25 mm for AJISAI and Starlette/Stella, respectively, which is why estimating station-dependent range biases or using station-dependent CoM, instead of one value for all SLR stations, is strongly recommended. This clearly indicates that the ILRS effort to produce CoM corrections for each satellite, which are site-specific and depend on the system characteristics at the time of tracking, is very important and needs to be implemented in the SLR data analysis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

  2. 2.

  3. 3.

  4. 4.

  5. 5.


  1. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85(8):457–473. doi:10.1007/s00190-011-0444-4

    Article  Google Scholar 

  2. Appleby G, Otsubo T, Pavlis EC, Luceri C, Sciarretta C (2012) Improvements in systematic effects in satellite laser ranging analyses—satellite centre-of-mass corrections. Geophysical Research Abstracts 14, EGU2012-11566, EGU General Assembly

  3. Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M (1994) Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): theory and initial results. Manuscr Geod 19(6):367–386

    Google Scholar 

  4. Beutler G, Brockmann E, Hugentobler U, Mervart L, Rothacher M, Weber R (1996) Combining consecutive short arcs into long arcs for precise and efficient GPS orbit determination. J Geod 70(5):287–299. doi:10.1007/BF00867349

    Article  Google Scholar 

  5. Beutler G, Jäggi A, Mervart L, Meyer U (2010) The celestial mechanics approach—theoretical foundations. J Geod 84(10):605–624. doi:10.1007/s00190-010-0401-7

    Article  Google Scholar 

  6. Bizouard C, Gambis D (2012) The combined solution C04 for Earth Orientation parameters consistent with International Terrestrial Reference Frame 2008. Observatoire de Paris, Syrte 61 av. de l’Observatoire Paris, France

  7. Cheng M, Shum C, Eanes J, Schutz B, Tapley B (1990) Long-period perturbations in Starlette orbit and tide solution. J Geophys Res 95(B6):8723–8736. doi:10.1029/JB095iB06p08723

    Article  Google Scholar 

  8. Cheng M, Shum C, Tapley B (1997) Determination of long-term changes in the earth’s gravity field from satellite laser ranging observations. J Geophys Res 102(B10):22377–22390. doi:10.1029/97JB01740

    Article  Google Scholar 

  9. Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS Software Version 5.0. Astronomical Institute, University of Bern, Switzerland

    Google Scholar 

  10. Dach R, Brockmann E, Schaer S, Beutler G, Meindl M, Prange L, Bock H, Jäggi A, Ostini L (2009) GNSS processing at CODE: status report. J Geod 83(3–4):353–365. doi:10.1007/s00190-008-0281-2

    Article  Google Scholar 

  11. Gourine B (2012) Use of Starlette and LAGEOS-1&-2 laser measurements for determination and analysis of stations coordinates and EOP time series. C R Geosci 344(6):319–333. doi:10.1016/j.crte.2012.05.002

  12. Gurtner W, Pop E, Utzinger J (2006) Two-color calibration of The Zimmerwald SLR system. In: Proceedings of the 15th international workshop on laser ranging in Canberra, Australia

  13. Jäggi A, Hugentobler U, Beutler G (2006) Pseudo-stochastic orbit modeling techniques for low-earth orbiters. J Geod 80(1):47–60. doi:10.1007/s00190-006-0029-9

    Article  Google Scholar 

  14. Jäggi A, Sośnica K, Thaller D, Beutler G (2012) Validation and estimation of low-degree gravity field coefficients using LAGEOS. In: Proceedings of 17th ILRS Workshop, vol 48, Bundesamt für Kartographie und Geodäsie, Frankfurt, ISBN 978-3-89888-999-5

  15. Lejba P, Schillak S (2011) Determination of station positions and velocities from laser ranging observations to Ajisai, Starlette and Stella satellites. Adv Space Res 47(4):654–662. doi:10.1016/j.asr.2010.10.013 ISSN 0273–1177

    Article  Google Scholar 

  16. Meindl M, Beutler G, Thaller D, Dach R, Jäggi A (2013) Geocenter coordinates estimated from GNSS data as viewed by perturbation theory. Adv Space Res 51(7):1047–1064. doi:10.1016/j.asr.2012.10.026

    Article  Google Scholar 

  17. Métris G, Vokrouhlicky D, Ries JC, Eanes JR (1997) Nongravitational effects and the LAGEOS eccentricity excitations. J Geophys Res 102(B2):2711–2729. doi:10.1029/96JB03186

    Article  Google Scholar 

  18. Otsubo T, Appleby G (2003) System-dependent center-of-mass correction for spherical geodetic satellites. J Geophys Res 108(B4):2201. doi:10.1029/2002JB002209

    Article  Google Scholar 

  19. Otsubo T, Amagai J, Kunimori H (1999) The center of mass correction of the geodetic satellite AJISAI for single-photon laser ranging. IEEE Trans Geosci Remote Sens 37(4): doi:10.1109/36.774712

  20. Otsubo T, Sherwood R, Appleby G (2012) Target signatures of existing sub-cm targets and prospects for future SLR constellations. In: Proceedings of the international technical laser workshop 2012 (ITLW-12), Frascati (Rome), Italy,

  21. Paolozzi A, Ciufolini I (2013) Lares succesfully launched in orbit: satellite and mission description. Acta Astron. ISSN 0094–5765, doi:10.1016/j.actaastro.2013.05.011

  22. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the earth gravitational model 2008 (EGM2008). J Geophys Res 117(B04):406. doi:10.1029/2011JB008916

    Google Scholar 

  23. Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30(2):135–143. doi:10.1016/S0273-1177(02)00277-6

    Article  Google Scholar 

  24. Petit G, Luzum B (2011) IERS Conventions 2010. IERS Technical Note 36. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main

  25. Picone JM, Hedin AE, Drob DP, Aikin AC (2002) NRL-MSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J Geophys Res 107(1468):16. doi:10.1029/2002JA009430

  26. Ries J (2008) SLR bias/CoM offset issues, impact on the TRF scale. GGOS Ground Networks and Communications Working Group Meeting, Vienna,

  27. Rodriguez-Solano CJ, Hugentobler U, Steigenberger P, Lutz S (2012) Impact of earth radiation pressure on GPS position estimates. J Geod 86(5):309–317. doi:10.1007/s00190-011-0517-4

    Article  Google Scholar 

  28. Rubincam DP (1998) Yarkovsky thermal drag on LAGEOS. J Geophys Res 93(B11):13805–13810. doi:10.1029/JB093iB11p13805

  29. Rutkowska M, Jagoda M (2012) Estimation of the elastic earth parameters using slr data for the low satellites STARLETTE and STELLA. Acta Geophysica 60(4):1213–1223. doi:10.2478/s11600-012-0045-5

    Article  Google Scholar 

  30. Schutz BE, Cheng MK, Shum CK, Eanes RJ, Tapley BD (1989) Analysis of earth rotation solution from Starlette. J Geophys Res 94(B8):10167–10174. doi:10.1029/JB094iB08p10167

    Article  Google Scholar 

  31. Sengoku A (1998) A plate motion study using Ajisai SLR data. Earth Planets Space 50:611–627

    Google Scholar 

  32. Smith DE, Turcotte DL (1993) Contributions of space geodesy to geodynamics: earth dynamics. American Geophysical Union, ISBN 9780875905242, doi:10.1029/GD024

  33. Sośnica K, Thaller D, Jäggi A, Dach R, Beutler G (2012a) Sensitivity of Lageos orbits to global gravity field models. Artif Satell 47(2):35–79. doi:10.2478/v10018-012-0013-y

    Google Scholar 

  34. Sośnica K, Thaller D, Dach R, Jäggi A, Beutler G (2013) Impact of loading displacements on SLR-derived parameters and on the consistency between GNSS and SLR results. J Geod 87(8):751–769. doi:10.1007/s00190-013-0644-1

    Article  Google Scholar 

  35. Sośnica K, Baumann C, Thaller D, Jäggi A, Dach R (2014) Combined LARES–LAGEOS solutions. In: Proceedings of the 18th international workshop on laser ranging, Fujiyoshida, Japan

  36. Sośnica K, Thaller D, Jäggi A, Dach R, Beutler G (2012b) Can we improve LAGEOS solutions by combining with LEO satellites? In: Proceedings of the international technical laser workshop 2012 (ITLW-12), Frascati (Rome), Italy

  37. Thaller D, Sośnica K, Dach R, Jäggi A, Beutler G (2011) LAGEOS–ETALON solutions using the Bernese Software. Mitteilungen des Bundesamtes fuer Kartographie und Geodaesie. In: Proceedings of the 17th international workshop on laser ranging, extending the range, vol 48, Bad Kötzting, Germany, pp 333–336, Frankfurt, ISBN 978-3-89888-999-5

  38. Thaller D, Sośnica K, Dach R, Jäggi A, Mareyen M, Richter B, Beutler G (2014a) Geocenter coordinates from GNSS and combined GNSS–SLR solutions using satellite co-locations. In: Rizos Ch and Willis P (eds) Earth on the edge: science for a sustainable planet, vol 139, International Association of Geodesy Symposia, pp 129–134, doi:10.1007/978-3-642-37222-3_16

  39. Thaller D, Sośnica K, Mareyen M, Dach R, Jäggi A, Beutler G (2014b) Geodetic parameters estimated from LAGEOS and Etalon data and comparison to GNSS-estimates. J Geod (submitted)

Download references


The ILRS (Pearlman et al. 2002) is acknowledged for providing SLR data. SLR stations are acknowledged for a continuous tracking of geodetic satellites. We acknowledge the ILRS Analysis Working Group for the permanent care of the highest quality of the SLR-derived products.

Author information



Corresponding author

Correspondence to Krzysztof Sośnica.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sośnica, K., Jäggi, A., Thaller, D. et al. Contribution of Starlette, Stella, and AJISAI to the SLR-derived global reference frame. J Geod 88, 789–804 (2014).

Download citation


  • Satellite geodesy
  • SLR
  • Starlette
  • Stella
  • Precise orbit determination
  • Reference frame
  • Geocenter