Skip to main content
Log in

GNSS antenna array-aided CORS ambiguity resolution

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Array-aided precise point positioning is a measurement concept that uses GNSS data, from multiple antennas in an array of known geometry, to realize improved GNSS parameter estimation proposed by Teunissen (IEEE Trans Signal Process 60:2870–2881, 2012). In this contribution, the benefits of array-aided CORS ambiguity resolution are explored. The mathematical model is formulated to show how the platform-array data can be reduced and how the variance matrix of the between-platform ambiguities can profit from the increased precision of the reduced platform data. The ambiguity resolution performance will be demonstrated for varying scenarios using simulation. We consider single-, dual- and triple-frequency scenarios of geometry-based and geometry-free models for different number of antennas and different standard deviations of the ionosphere-weighted constraints. The performances of both full and partial ambiguity resolution (PAR) are presented for these different scenarios. As the study shows, when full advantage is taken of the array antennas, both full and partial ambiguity resolution can be significantly improved, in some important cases even enabling instantaneous ambiguity resolution. PAR widelaning and its suboptimal character are hereby also illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Blewitt G (1989) Carrier phase ambiguity resolution for the global positioning system applied to geodetic baselines up to 2000 km. J Geophys Res 94:135–151

    Google Scholar 

  • Cocard C, Geiger A (1992) Systematic search for all possible widelanes. In: 6th International Geodetic Symposium on Satellite Positioning. Columbus, Ohio, pp 373–386

  • Cocard M, Bourgon S, Kamali O, Collins P (2008) A systematic investigation of optimal carrier-phase combinations for modernized triple-frequency GPS. J Geod 82(9):555–564

    Article  Google Scholar 

  • Dai L, Eslinger D, Sharpe T (2007) Innovative algorithms to improve long range RTK reliability and availability. In: ION NTM 2007, San Diego CA, pp 860–872.

  • Dong D, Bock Y (1989) Global Positioning System network analysis with phase ambiguity resolution applied to crustal deformation studies in California. J Geophys Res 94(B4):3949–3966

    Article  Google Scholar 

  • Euler H, Landau H (1992) Fast GPS ambiguity resolution on-the-fly for real-time applications. In: 6th International Geodetic Symposium on Satellite Positioning. Columbus, Ohio, pp 650–659

  • Feng Y (2008) GNSS three carrier ambiguity resolution using ionosphere-reduced virtual signals. J Geod 82:847–862

    Article  Google Scholar 

  • Giorgi G, Teunissen PJG, Verhagen S, Buist P (2010) Testing a new multivariate gnss carrier phase attitude determination method for remote sensing platforms. Adv Space Res 46(2):118–129

    Article  Google Scholar 

  • Goad C (1992) Robust techniques for determining GPS phase ambiguities. In: 6th International Geodetic Symposium on Satellite Positioning. Columbus, Ohio, pp 245–254

  • Hernández-Pajares M, Zomoza JMJ, Subirana JS, Colombo O (2003) Feasibility of wide-area subdecimeter navigation with GALILEO and modernized GPS. IEEE Trans Geosci Remote Sens 41(9):2128–2131

    Article  Google Scholar 

  • Isshiki H (2004) A long baseline kinematic GPS solution of ionosphere-free combination constrained by widelane combination. In: Oceans’04. MTTS/IEEE Techno-Ocean’04, IEEE, vol 4, pp 1807–1814.

  • Lawrence D (2009) A new method for partial ambiguity resolution. In: ION ITM 2009, Anaheim, CA, pp 652–663.

  • Li B, Teunissen PJG (2012) Real-time kinematic positioning using fused data from multiple GNSS antennas. In: 15th International Conference on Information Fusion (FUSION), Singapore, pp 933–938.

  • Li B, Feng Y, Shen Y (2010) Three carrier ambiguity resolution: distance-independent performance demonstrated using semi-generated triple frequency GPS signals. GPS Solut 14(2):177–184

    Article  Google Scholar 

  • Li B, Verhagen S, Teunissen PJG (2013) Robustness of GNSS integer ambiguity resolution in the presence of atmospheric biases. GPS Solut doi:10.1007/s10291-013-0329-5

  • Liu GC, Lachapelle G (2002) Ionosphere weighted GPS cycle ambiguity resolution. In: ION National Technical Meeting, San Deigo, CA, pp 1–5.

  • Melbourne WG (1985) The case for ranging in GPS-based geodetic systems. In: 1st International Symposium on Precise Positioning with Global Positioning System, Rockville, Maryland, vol 1, pp 373–386.

  • Mowlam A (2004) Baseline precision results using triple frequency partial ambiguity sets. In: ION GNSS-2004. Long Beach, CA, pp 2509–2518

  • Odijk D (2000) Weighting ionospheric corrections to improve fast GPS positioning over medium distances. In: ION GPS 2000. Salt Lake City, UT, pp 1113–1123

  • Pantoja VDG (2009) Partial ambiguity fixing for precise point positioning with multiple frequencies in the presence of biases. Thesis, Department of Electrical Engineering and Information Technology, Technical University Munich

  • Parkins A (2011) Increasing GNSS RTK availability with a new single-epoch batch partial ambiguity resolution algorithm. GPS Solut 15:391–402

    Article  Google Scholar 

  • Rao C (1973) Linear statistical inference and its applications. John Wiley and Sons, New York

  • Ray JK, Canon ME, Fenton P (2000) GPS code and carrier multipath mitigation using a multi-antenna system. IEEE Trans Aerosp Electron Syst 37(1):183–195

    Article  Google Scholar 

  • Richert T, El-Sheimy N (2007) Optimal linear combinations of triple frequency carrier phase data from future global navigation satellite systems. GPS Solut 11(1):11–19

    Article  Google Scholar 

  • Schaffrin B, Bock Y (1988) A unified scheme for processing GPS dual-band phase observations. Bull Géod 62(2):142–160

    Article  Google Scholar 

  • Takasu T, Yasuda A (2010) Kalman-filter-based integer ambiguity resolution strategy for long-baseline RTK with ionosphere and troposphere estimation. In: ION GNSS 2010. Portland, Oregon, pp 201–207

  • Teunissen PJG (1997) On the GPS widelane and its decorrelating property. J Geod 71:577–587

    Article  Google Scholar 

  • Teunissen PJG (1998a) Minimal detectable biases of GPS data. J Geod 72:236–244

    Article  Google Scholar 

  • Teunissen PJG (1998b) Success probability of integer GPS ambiguity rounding and bootstrapping. J Geod 72(10):606–612

    Article  Google Scholar 

  • Teunissen PJG (2003) Adjustment theory: an introduction. Series on mathematical geodesy and positioning. Delft University Press, Delft

    Google Scholar 

  • Teunissen PJG (2012) A-PPP: array-aided precise point positioning with global navigation satellite systems. IEEE Trans Signal Process 60(6):2870–2881

    Article  Google Scholar 

  • Teunissen PJG, de Jonge P, Tiberius CCJM (1997) The least-squares ambiguity decorrelation adjustment: its performance on short GPS baselines and short observation spans. J Geod 71:589–602

    Article  Google Scholar 

  • Teunissen PJG, Joosten P, Tiberius CCJM (1999) Geometry-free ambiguity success rates in case of partial fixing. In: ION National Technical Meeting 1999 and 19th Biennal Guidance Test Symposium, San Diego CA, pp 201–207.

  • Teunissen PJG, Joosten P, Tiberius CCJM (2002) A comparison of TCAR, CIR and LAMBDA GNSS ambiguity resolution. In: ION GPS 2002, Portland, OR, pp 2799–2808.

  • Verhagen S, Li B (2012) LAMBDA software package: Matlab implementation, Version 3.0. Delft University of Technology and Curtin University, Perth, Australia.

  • Verhagen S, Li B (2013) Ps-LAMBDA software package: Matlab implementation, Version 1.0. Curtin University of Technology, Perth, Australia.

  • Verhagen S, Li B, Teunissen PJG (2013) Ps-LAMBDA: ambiguity success rate evaluation software for interferometric applications. Comput Geosci 54:361–376

    Article  Google Scholar 

  • Werner W, Winkel J (2003) TCAR and MCAR options with Galileo and GPS. In: ION GPS/GNSS 2003, Portland, OR, pp 790–800.

  • Wübbena G (1991) Zur Modellerung von GPS Beobachtungen fuer die hochgenaue Positionsbestimmung. University Hannover, Germany, (in German).

Download references

Acknowledgments

This work has been executed in the framework of the Positioning Program Project 1.01 ‘New carrier phase processing strategies for achieving precise and reliable multi-satellite, multi-frequency GNSS/RNSS positioning in Australia’ of the Cooperative Research Centre for Spatial Information. PJG Teunissen is the recipient of an Australian Research Council (ARC) Federation Fellowship (FF0883188). This support is gratefully acknowledged. This work is also supported by the National Natural Science Funds of China (41374031), the State Key Laboratory of Geo-information Engineering (SKLGIE2013-M-2-2) and the Key Laboratory of Geo-informatics of State Bureau of Surveying and Mapping (201306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bofeng Li.

Appendices

Appendix

Assuming all matrices and vectors involved have appropriate dimensions, the following properties of the Kronecker product \(\otimes \) and vectorization operator vec (Rao 1973):

$$\begin{aligned}&(AB)\otimes (CD)=(A\otimes C)(B\otimes D) \end{aligned}$$
(23)
$$\begin{aligned}&\mathtt{vec }{(ABC)}=(C^T\otimes A)\mathtt{vec }(B) \end{aligned}$$
(24)

and the projector identity (Teunissen 2003)

$$\begin{aligned} QD_r(D_r^TQD_r)^{-1}D_r^T = I_r - e_r(e_r^TQ^{-1}e_r)^{-1}e_r^TQ^{-1} \end{aligned}$$
(25)

with \(D_r^Te_r=0\), will be frequently applied in the derivations.

Appendix A: Derivation of some formulae in Sect. 2

To derive (5), we apply the error propagation law to

$$\begin{aligned} \left[ \begin{array}{l} y_1\\ \mathtt{vec }(\tilde{Y}) \end{array}\right] = \mathtt{vec }(YR_r)= (R_r^T\otimes I_{2fs}) \mathtt{vec }(Y) \end{aligned}$$
(26)

where \(R_{r}=[c_{1}, D_{r}]\). This gives

$$\begin{aligned} \mathsf{D }\left[ \begin{array}{l} y_1\\ \mathtt{vec }(\tilde{Y}) \end{array}\right]&= (R_r^T\otimes I_{2fs}) \mathsf{D }(\mathtt{vec }(Y)) (R_r\otimes I_{2fs}) \nonumber \\&= (R_r^T\otimes I_{2fs}) (Q_r\otimes Q) (R_r\otimes I_{2fs}) \nonumber \\&= \left[ \begin{array}{l@{\quad }l} c_1^TQ_rc_1 &{} c_1^TQ_rD_r \\ D_r^TQ_rc_1 &{} D_r^TQ_rD_r \end{array}\right] \otimes Q \end{aligned}$$
(27)

To derive the first equation of (8), we apply the invertible transformation (6) to (3). It follows:

$$\begin{aligned}&\Big [\big (1,~-c_1^TQ_rD_r(D_r^TQ_rD_r)^{-1}\big )\otimes I_{2fs}\Big ] \left[ \begin{array}{l} y_1\\ \mathtt{vec }(\tilde{Y}) \end{array}\right] \nonumber \\&= y_1 - (c_1^TQ_rD_r(D_r^TQ_rD_r)^{-1}\otimes I_{2fs})\mathtt{vec }(\tilde{Y}) \nonumber \\&= y_1 - \mathtt{vec }(\tilde{Y}(D_r^TQ_rD_r)^{-1}D_r^TQ_rc_1) \nonumber \\&= y_1 - YD_r(D_r^TQ_rD_r)^{-1}D_r^TQ_rc_1 \nonumber \\&= y_1 - Y \big [I_r - Q_r^{-1}e_r(e_r^TQ_r^{-1}e_r)^{-1}e_r^T \big ]c_1 \nonumber \\&= YQ_r^{-1}e_r(e_r^TQ_r^{-1}e_r)^{-1} \end{aligned}$$
(28)

where the identity (25) was applied. One can easily work out the variance matrix (8) using this identity.

Appendix B: Derivation of variance matrix (16)

For the geometry-free model, we replace \(g\) with \(I_s\) in (13) and further use the differencing matrix \(D_{2f}^T\otimes I_s\) to eliminate troposphere design matrix:

$$\begin{aligned}{}[D_{2f}^T\Gamma \otimes I_s]~~\mathrm{and}~~D_{2f}^T\tilde{Q}D_{2f}\otimes W^{-1} \end{aligned}$$
(29)

with \(\tilde{Q}=\frac{1}{r}Q_{f}+\sigma _{\iota }^{2}\nu \nu ^{T}\). This gives the normal matrix of \(k\) epochs for ambiguities as

$$\begin{aligned} \big ( \Gamma ^TD_{2f}(D_{2f}^T\tilde{Q}D_{2f})^{-1}D_{2f}^T\Gamma \big )\otimes (k\overline{W}) = \tilde{N} \otimes (k\overline{W})\nonumber \\ \end{aligned}$$
(30)

We now concentrate on the first part \(\tilde{N}\) only and use the identity (25) to rewrite it as

$$\begin{aligned} \tilde{N} = \Gamma ^T \tilde{Q}^{-1}\Gamma - \Gamma ^T\tilde{Q}^{-1}e_{2f}(e_{2f}^T\tilde{Q}^{-1}e_{2f})^{-1}e_{2f}^T\tilde{Q}^{-1}\Gamma \nonumber \\ \end{aligned}$$
(31)

Using matrix inversion lemma gives:

$$\begin{aligned} \tilde{N}^{-1} = (\Gamma ^T\tilde{Q}^{-1}\Gamma )^{-1} + c_{\hat{\tau }_\mathrm{free}}^2qq^T \end{aligned}$$
(32)

with

$$\begin{aligned} c_{\hat{\tau }_\mathrm{free}}^{-2}&= e_{2f}^T\tilde{Q}^{-1}e_{2f} - e_{2f}^T\tilde{Q}^{-1}(\Gamma ^T\tilde{Q}^{-1}\Gamma )^{-1}\Gamma ^T\tilde{Q}^{-1}e_{2f} \end{aligned}$$
(33)
$$\begin{aligned} q&= (\Gamma ^T\tilde{Q}^{-1}\Gamma )^{-1}\Gamma ^T\tilde{Q}^{-1}e_{2f} \end{aligned}$$
(34)

We first work out \(c_{\hat{\tau }_\mathrm{free}}^{-2}\). Using the analogous projector identity

$$\begin{aligned} I_{2f} - \Gamma (\Gamma ^T\tilde{Q}^{-1}\Gamma )^{-1}\Gamma ^T\tilde{Q}^{-1} = \tilde{Q}\Gamma _{\bot }(\Gamma _{\bot }^T\tilde{Q}\Gamma _{\bot })^{-1}\Gamma _{\bot }^T\nonumber \\ \end{aligned}$$
(35)

with \(\Gamma _{\bot }=[0,~I_f]^T\), we get

$$\begin{aligned} c_{\hat{\tau }_\mathrm{free}}^{-2}&= e_{2f}^T\Gamma _{\bot }(\Gamma _{\bot }^T\tilde{Q}\Gamma _{\bot })^{-1}\Gamma _{\bot }^Te_{2f}\\&= e_f^T\left( \frac{1}{r}Q_p+\sigma _{\iota }^2\mu \mu ^T\right) ^{-1}e_f \end{aligned}$$

where use is made of \(\tilde{Q}=\frac{1}{r}Q_f+\sigma _{\iota }^2\nu \nu ^T\).

Now we work out the expression for \(q\). Premultiplying the matrix identity (35) with \((\Gamma ^T\Gamma )^{-1}\Gamma ^T\) gives

$$\begin{aligned}&(\Gamma ^T\tilde{Q}^{-1}\Gamma )^{-1}\Gamma ^T\tilde{Q}^{-1} \nonumber \\&\quad = (\Gamma ^T\Gamma )^{-1}\Gamma ^T \big (I_{2f}-\tilde{Q}\Gamma _{\bot }(\Gamma _{\bot }^T\tilde{Q}\Gamma _{\bot })^{-1}\Gamma _{\bot }^T \big ) \nonumber \\&\quad = \!\Lambda ^{-1}[I_f,0]\left( I_{2f}-\tilde{Q} \left[ \begin{array}{l} 0\\ I_f \end{array}\right] \left( \frac{1}{r}Q_p+\sigma _{\iota }^2\mu \mu ^T\right) ^{-1}[0,I_f] \right) \nonumber \\ \end{aligned}$$
(36)

Hence

$$\begin{aligned} q&= (\Gamma ^T\tilde{Q}^{-1}\Gamma )^{-1}\Gamma ^T\tilde{Q}^{-1}e_{2f} \nonumber \\&= \Lambda ^{-1} \left( e_f + \sigma _{\iota }^2\mu \mu ^T\left( \frac{1}{r}Q_p+\sigma _{\iota }^2\mu \mu ^T\right) ^{-1}e_f \right) \end{aligned}$$
(37)

It is not difficult to verify that

$$\begin{aligned} I_f + \sigma _{\iota }^2\mu \mu ^T\left( \frac{1}{r}Q_p+\sigma _{\iota }^2\mu \mu ^T\right) ^{-1} = I_f + \alpha \mu \mu ^TQ_p^{-1} \end{aligned}$$

with \(\alpha =[(r\sigma _{\iota }^2)^{-1} + \mu ^TQ_p^{-1}\mu ]^{-1}\). Hence, for \(q\) we find

$$\begin{aligned} q = \Lambda ^{-1} (I_f + \alpha \mu \mu ^TQ_p^{-1}) e_f \end{aligned}$$
(38)

It is rather easy to prove:

$$\begin{aligned} (\Gamma ^T\tilde{Q}^{-1}\Gamma )^{-1}\otimes \frac{1}{k}\overline{W}^{-1}=Q_{\hat{a}\hat{a}}^\mathrm{(fixed)} \end{aligned}$$
(39)

Finally, combining (30), (32) and (39) yields (16).

Appendix C: Derivation of variance matrix (17)

To specify the time variation of troposphere design matrix \(g\) and elevation-dependent weight matrix, we assign the epoch index \(t\) to \(g\) and \(W\). The normal matrix of \(k\) epochs reads

$$\begin{aligned} \left[ \begin{array}{l@{\quad }l} (\Gamma ^T\tilde{Q}^{-1}\Gamma )\otimes k\overline{W} &{} (\Gamma ^T\tilde{Q}^{-1}e_{2f})\otimes k\overline{W}\bar{g}\\ (e_{2f}^T\tilde{Q}^{-1}\Gamma )\otimes k\bar{g}_t^T\overline{W} &{} c_{\hat{\tau }|a}^{-2}\sum _{t=1}^k g_t^TW_tg_t \end{array} \right] \end{aligned}$$
(40)

with \(\overline{W}=\frac{1}{k}\sum _{t=1}^kW_t\), \(\bar{g} =\left( \sum _{t=1}^kW_t\right) ^{-1}\sum _{t=1}^k W_tg_t\), \(\sum _{t=1}^k W_tg_t= k\overline{W}\bar{g}\) and

$$\begin{aligned} c_{\hat{\tau }|a}^{-2}=e_{2f}^T\tilde{Q}^{-1}e_{2f}= e_{2f}^T \left( \frac{1}{r}Q_{f}+\sigma _{\iota }^{2}\nu \nu ^{T}\right) ^{-1}e_{2f} \end{aligned}$$
(41)

Reducing the ZTD parameter, the normal matrix of ambiguities over \(k\) epochs is

$$\begin{aligned} \left( Q_{\hat{a}\hat{a}}^\mathrm{(fixed)}\right) ^{-1}-\frac{(\Gamma ^T\tilde{Q}^{-1}e_{2f}\otimes \overline{W}\bar{g}) (e_{2f}^T\tilde{Q}^{-1}\Gamma \otimes \bar{g}^T\overline{W})}{k^{-2}c_{\hat{\tau }|a}^{-2}\sum _{t=1}^k g_t^TW_tg_t}\nonumber \\ \end{aligned}$$
(42)

Using the matrix inversion lemma, we obtain the variance matrix (43) of ambiguities.

$$\begin{aligned} Q_{\hat{a}\hat{a}} = Q_{\hat{a}\hat{a}}^\mathrm{(fixed)}+ \frac{k^2c_{\hat{\tau }|a}^2 Q_{\hat{a}\hat{a}}^\mathrm{(fixed)}(\Gamma ^T\tilde{Q}^{-1}e_{2f}e_{2f}^T\tilde{Q}^{-1}\Gamma \otimes \overline{W}\bar{g}\bar{g}^T\overline{W}) Q_{\hat{a}\hat{a}}^\mathrm{(fixed)}}{\sum _{t=1}^k g_t^TW_tg_t- (e_{2f}^T\tilde{Q}^{-1}\Gamma \otimes \bar{g}^T\overline{W}) Q_{\hat{a}\hat{a}}^\mathrm{(fixed)} (\Gamma ^T\tilde{Q}^{-1}e_{2f}\otimes \overline{W}\bar{g})k^2c_{\hat{\tau }|a}^2} = Q_{\hat{a}\hat{a}}^\mathrm{(fixed)} + \frac{U}{v} \end{aligned}$$
(43)

Let us now focus on the fraction \(U/v\) of the second term only. We first simplify its numerator \(U\). Substituting (39) into it yields:

$$\begin{aligned} U&= c_{\hat{\tau }|a}^2 \underbrace{(\Gamma ^T\tilde{Q}^{-1}\Gamma )^{-1}\Gamma ^T\tilde{Q}^{-1}e_{2f}}_q \nonumber \\&\times \underbrace{e_{2f}^T\tilde{Q}^{-1}\Gamma (\Gamma ^T\tilde{Q}^{-1}\Gamma )^{-1}}_{q^T} \otimes \bar{g}\bar{g}^T \nonumber \\&= c_{\hat{\tau }|a}^2 qq^T\otimes \bar{g}\bar{g}^T \end{aligned}$$
(44)

Substituting (39) into the denominator \(v\) of fraction yields:

$$\begin{aligned} v&= \sum _{t=1}^k g_t^TW_tg_t - \frac{k}{c_{\hat{\tau }|a}^{-2}} e_{2f}^T\tilde{Q}^{-1}\Gamma (\Gamma ^T\tilde{Q}^{-1}\Gamma )^{-1} \nonumber \\&\times \Gamma ^T\tilde{Q}^{-1}e_{2f}\bar{g}^T\overline{W}\bar{g} \end{aligned}$$
(45)
$$\begin{aligned}&= \sum _{t=1}^k g_t^TW_tg_t - \frac{k}{c_{\hat{\tau }|a}^{-2}}\left( c_{\hat{\tau }|a}^{-2} - c_{\hat{\tau }_\mathrm{free}}^{-2}\right) \bar{g}^T\overline{W}\bar{g} \end{aligned}$$
(46)

where use is made of (33) and (41). Further substituting the identity

$$\begin{aligned} \sum _{t=1}^k(g_t^TW_tg_t)=\sum _{t=1}^k(g_t-\bar{g})^TW_t(g_t-\bar{g})+ k\bar{g}^T\overline{W}\bar{g} \end{aligned}$$
(47)

into (46) gives

$$\begin{aligned} v = \sum _{t=1}^k(g_t-\bar{g})^TW_t(g_t-\bar{g})+ k\frac{c_{\hat{\tau }|a}^2}{c_{\hat{\tau }_\mathrm{free}}^2}\bar{g}^T\overline{W}\bar{g} \end{aligned}$$
(48)

Therefore,

$$\begin{aligned} \frac{U}{v} = \frac{1}{k} c_{\hat{\tau }}^2qq^T\otimes P_{\bar{g}}\overline{W}^{-1} \end{aligned}$$
(49)

where

$$\begin{aligned} c_{\hat{\tau }}^2&= c_{\hat{\tau }_\mathrm{free}}^2 \left[ 1+\frac{c_{\hat{\tau }_\mathrm{free}}^2}{c_{\hat{\tau }|a}^2} \frac{\sum _{t=1}^k(g_t-\bar{g})^TW_t(g_t-\bar{g})}{k\bar{g}^T\overline{W}\bar{g}}\right] ^{-1} \\ P_{\bar{g}}&= \bar{g}(\bar{g}^T\overline{W}\bar{g})^{-1}\bar{g}^T\overline{W} \end{aligned}$$

Finally, inserting (49) into (43) yields (17).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, B., Teunissen, P.J.G. GNSS antenna array-aided CORS ambiguity resolution. J Geod 88, 363–376 (2014). https://doi.org/10.1007/s00190-013-0688-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-013-0688-2

Keywords

Navigation