Skip to main content
Log in

Comparisons of homogeneously reprocessed GPS and VLBI long time-series of troposphere zenith delays and gradients

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Troposphere parameters estimated from space-geodetic techniques, like the Global Positioning System (GPS) or Very Long Baseline Interferometry (VLBI), can be used to monitor the atmospheric water vapor content. Although the troposphere can only be monitored at discrete locations, the distribution of the instruments, at least the GPS antennas, can be assumed to be quasi-global. Critical in the data analysis are systematic effects within each single technique that significantly degrade the accuracy and especially the long-term stability of the zenith delay determination. In this paper, consistent time-series of troposphere zenith delays and gradients from homogeneously reprocessed GPS and VLBI solutions are compared for a time period of 11 years. The homogeneity of these completely reprocessed time-series is essential to avoid misinterpretations due to individual model changes. Co-located sites are used to investigate systematic effects and the long-term behavior of the two space-geodetic techniques. Both techniques show common signals in the troposphere parameters at a very high level of precision. The biases between the troposphere zenith delays are at the level of a few millimeters. On the other hand, long-term trends significantly differ for the two techniques, preventing climatological interpretations at present. Tests assume these differences to be due to mathematical artifacts such as different sampling rates and unmodeled semi-annual signals with varying amplitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: a new release of the International Terrestrial Reference Frame for earth science applications. J Geophys Res 107(B10):2214. DOI 10.1029/2001JB000561

    Article  Google Scholar 

  • Angermann D, Drewes H, Krügel M, Meisel B, Gerstl M, Kelm R, Müller H, Seemüller W, Tesmer V (2004) ITRS combination center at DGFI—a terrestrial reference frame realization 2003. Deutsche Geodätische Kommission, Reihe B, vol 313, München

  • Behrend D, Cucurull L, Vila J, Haas R (2000) An inter-comparison study to estimate zenith wet delays using VLBI, GPS and NWP models. Earth Planets Space 52(10):691–694

    Google Scholar 

  • Berg H (1948) Allgemeine Meteorologie. Dümmlers Verlag, Bonn

    Google Scholar 

  • Beutler G, Rothacher M, Schaer S, Springer T, Kouba J, Neilan R (1999) The International GPS Service (IGS): an interdisciplinary service in support of Earth sciences. Adv Space Res 23(4):631–653

    Article  Google Scholar 

  • Boehm J, Schuh H, Weber R (2001) Comparison of tropospheric gradients determined by VLBI and GPS. Phys Chem Earth 26(6–8):385–388. DOI 10.1016/S1464-1895(01)00070-9

    Google Scholar 

  • Boehm J, Schuh H, Tesmer V, Schmitz-Huebsch H (2003) Tropospheric zenith delays determined by VLBI as a contribution to climatological studies. In: Schwegmann W, Thorandt V (eds) Proceedings of the 16th Working Meeting on European VLBI for Geodesy and Astrometry. Bundesamt für Kartographie und Geodäsie, Leipzig/Frankfurt am Main, pp 237–246

    Google Scholar 

  • Boucher C, Altamimi Z, Sillard P (1998) Results and analysis of the ITRF96. IERS Tech. Note, vol 24. Obs de Paris, Paris

  • Boucher C, Altamimi Z, Sillard P (1999) The 1997 International Terrestrial Reference Frame (ITRF97). IERS Tech. Note, vol 27. Obs. de Paris, Paris

  • Chen G, Herring T (1997) Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. J Geophys Res 102(B9):20489–20502

    Article  Google Scholar 

  • Dong D, Fang P, Bock Y, Cheng M, Miyazaki S (2002) Anatomy of apparent seasonal variations from GPS-derived site position time series. J Geophys Res 107(B4). DOI 10.1029/2001JB000573

  • Gendt G (1996) Comparison of IGS troposphere estimations. In: Neilan RE, van Scoy PA, Zumberge JF (eds) Proceedings IGS 1996 Analysis Center Workshop. IGS Central Bureau, Pasadena, pp 151–164

    Google Scholar 

  • Gradinarsky L, Haas R, Elgered G, Johansson J (2000) Wet path delay and delay gradients inferred from microwave radiometer, GPS and VLBI observations. Earth Planets Space 52(10):695–698

    Google Scholar 

  • Gradinarsky L, Johansson J, Bouma H, Scherneck HG, Elgered G (2002) Climate monitoring using GPS. Phys Chem Earth 27(4-5):335–340. DOI 10.1016/S1474-7065(02)00009-8

    Google Scholar 

  • Haas R, Elgered G, Gradinarsky L, Johansson J (2003) Assessing long term trends in the atmospheric water vapor content by combining data from VLBI, GPS, radiosondes and microwave radiometry. In: Schwegmann W, Thorandt V (eds) Proceedings of the 16th Working Meeting on European VLBI for Geodesy and Astrometry. Bundesamt für Kartographie und Geodäsie, Leipzig/Frankfurt am Main, pp 279–288

    Google Scholar 

  • Hugentobler U, Dach R, Fridez P, Meindl M (eds) (2006) Bernese GPS Software Version 5.0. Astronomical Institute, University of Bern. Draft version available at http://www.bernese.unibe.ch/docs/DOCU50draft.pdf

  • Krügel M, Tesmer V, Angermann D, Thaller D, Rothacher M, Schmid R (2004) CONT02 campaign—combination of VLBI and GPS. In: Vandenberg NR, Baver KD (eds) International VLBI Service for Geodesy and Astrometry 2004 General Meeting Proceedings. NASA/CP-2004-212255, NASA, Greenbelt, pp 418–422

    Google Scholar 

  • MacMillan D (1995) Atmospheric gradients from very long baseline interferometry observations. Geophys Res Lett 22(9):1041–1044

    Article  Google Scholar 

  • Meindl M, Schaer S, Hugentobler U, Beutler G (2004) Tropospheric gradient estimation at CODE: results from global solutions. J Meteorol Soc of Jpn 82(1B):331–338

    Article  Google Scholar 

  • Menge F, Seeber G, Völksen C, Wübbena G, Schmitz M (1998) Results of absolute field calibration of GPS antenna PCV. In: Proceedings of ION GPS-98, Nashville, pp 31–38

  • Miller A (1976) The climate of Chile. In: Schwerdtfeger W. (eds) Climates of Central and South America World Survey of Climatology vol 12. Elsevier, Amsterdam-Oxford-New York, pp 113–145

    Google Scholar 

  • Niell A (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101(B2):3227–3246

    Article  Google Scholar 

  • Niell A, Coster A, Solheim F, Menders V, Toor P, Langley R, Upham C (2001) Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, GPS, and VLBI. J Atmosph Ocean Technol 18(6):830–850

    Article  Google Scholar 

  • Pacione R, Fionda E, Ferrara R, Lanotte R, Sciarretta C, Vespe F (2002) Comparison of atmospheric parameters derived from GPS, VLBI and a ground-based microwave radiometer in Italy. Phys Chem Earth 27(4–5):309–316. DOI 10.1016/S1474-7065(02)00005-0

    Google Scholar 

  • Rothacher M (2002) Estimation of station heights with GPS. In: Drewes H, Dodson A, Fortes L, Sanchez L, Sandoval P (eds) Vertical reference systems International Association of Geodesy Symposia vol 124. Springer, Berlin Heidelberg New York, pp 81–90

    Google Scholar 

  • Rothacher M, Ma C (2006) Steps toward a future set of IERS products and a modified IERS structure. In: Richter B, Dick W (eds) Proceedings of the IERS Workshop on Combination. Bundesamt für Kartographie und Geodäsie, (in press)

  • Saastamoinen J (1973) Contributions to the theory of atmospheric refraction. Bull Géod 107:13–34

    Article  Google Scholar 

  • Schlüter W, Himwich E, Nothnagel A, Vandenberg N, Whitney A (2002) IVS and its important role in the maintenance of the global reference systems. Adv Space Res 30(2):145–150. DOI 10.1016/S0273-1177(02)00278-8

    Article  Google Scholar 

  • Schmid R, Rothacher M (2003) Estimation of elevation-dependent satellite antenna phase center variations of GPS satellites. J Geod 77(7–8):440–446. DOI 10.1007/s00190-003-0339-0

    Article  Google Scholar 

  • Schmid R, Rothacher M, Thaller D, Steigenberger P (2005) Absolute phase center corrections of satellite and receiver antennas: Impact on global GPS solutions and estimation of azimuthal phase center variations of the satellite antenna. GPS Sol 9(4):283–293

    Article  Google Scholar 

  • Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2006) Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas. J Geod (submitted)

  • Snajdrova K, Boehm J, Willis P, Haas R, Schuh H (2005) Multi-technique comparison of tropospheric zenith delays derived during the CONT02 campaign. J Geod 79(10–11):613–623. DOI 10.1007/s00190-005-0010-z

    Google Scholar 

  • Steigenberger P, Rothacher M, Dietrich R, Fritsche M, Rülke A, Vey S (2006) Reprocessing of a global GPS network. J Geophys Res 111(B05402). DOI 10.1029/2005JB003747

  • Tesmer V, Kutterer H (2004) An advanced stochastic model for VLBI observations and its application to VLBI data analysis. In: Vandenberg NR, Baver KD (eds) International VLBI Service for Geodesy and Astrometry 2004 General Meeting Proceedings. NASA/CP-2004-212255, NASA, Greenbelt, pp 296–300

    Google Scholar 

  • Tesmer V, Kutterer H, Drewes H (2004) Simultaneous estimation of a TRF, the EOP and a CRF. In: Vandenberg NR, Baver KD (eds) International VLBI Service for Geodesy and Astrometry 2004 General Meeting Proceedings. NASA/ CP-2004-212255, NASA, Greenbelt, pp 311–314

    Google Scholar 

  • Thaller D, Dill R, Krügel M, Steigenberger P, Rothacher M, Tesmer V (2006) CONT02 analysis and combination of long EOP series. In: Flury J, Rummel R, Reigber C, Rothacher M, Boedecker G, Schreiber U (eds) Observation of the Earth system from space. Springer, Berlin Heidelberg New York, pp 389–411

    Chapter  Google Scholar 

  • Thomas C, MacMillan D (2003) Core operation center report. In: Vandenberg NR, Baver KD (eds) International VLBI Service for Geodesy and Astrometry 2002 Annual Report. NASA/ TP-2003211619. Goddard Space Flight Center, Maryland, pp 179–181

    Google Scholar 

  • Titov O, Tesmer V, Boehm J (2004) Occam v6.0 software for VLBI data analysis. In: Vandenberg NR, Baver KD (eds) International VLBI Service for Geodesy and Astrometry 2004 General Meeting Proceedings. NASA/CP-2004-212255, NASA, Greenbelt, pp 267–271

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Steigenberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steigenberger, P., Tesmer, V., Krügel, M. et al. Comparisons of homogeneously reprocessed GPS and VLBI long time-series of troposphere zenith delays and gradients. J Geod 81, 503–514 (2007). https://doi.org/10.1007/s00190-006-0124-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-006-0124-y

Keywords

Navigation