Skip to main content

Advertisement

Log in

Modeling long-period noise in kinematic GPS applications

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

We develop and test an algorithm for modeling and removing elevation error in kinematic GPS trajectories in the context of a kinematic GPS survey of the salar de Uyuni, Bolivia. Noise in the kinematic trajectory ranges over 15 cm and is highly autocorrelated, resulting in significant contamination of the topographic signal. We solve for a noise model using crossover differences at trajectory intersections as constraints in a least-squares inversion. Validation of the model using multiple realizations of synthetic/simulated noise shows an average decrease in root-mean-square-error (RMSE) by a factor of four. Applying the model to data from the salar de Uyuni survey, we find that crossover differences drop by a factor of eight (from an RMSE of 5.6  to 0.7 cm), and previously obscured topographic features are revealed in a plan view of the corrected trajectory. We believe that this algorithm can be successfully adapted to other survey methods that employ kinematic GPS for positioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agnew DC (1992) The time-domain behavior of power-law noises. Geophys Res Lett 19(4):333–336

    Google Scholar 

  • Bock Y, Agnew DC, Fang P, Gengrich JF, Hager BH, Herring TA, Hudnut KW, King RW, Larsen SC, Minster J-B, Stark K, Wdowinski S, Wyatt FK (1993) Detection of crustal deformation from the Landers earthquake sequence using continuous geodetic measurements. Nature 361(6410):337–340

    Article  Google Scholar 

  • Bock Y, Nikolaidis RM, de Jonge PJ, Bevis M (2000) Instantaneous geodetic positioning at medium distances with the global positioning system. J Geophys Res 105:28223–28253

    Article  Google Scholar 

  • Borsa AA (2005) Geomorphology of the salar de Uyuni, Bolivia. Scripps Institution of Oceanography. La Jolla, University of California at San Diego

    Google Scholar 

  • Chen G (1998) GPS kinematic positioning for the airborne laser altimetry at Long Valley, California. Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology

  • Dong D, Bock Y (1989) Global positioning system network analysis with phase ambiguity resolution applied to crustal deformation studies in California. J Geophys Res 94(B4):3949–3966

    Google Scholar 

  • Elósegui P, Davis JL, Jaldehag RTK, Johansson JM, Niell AE, Shapiro II (1995). Geodesy using the global positioning system: the effects of signal scattering on estimates of site position. J Geophys Res 100:9921–9934

    Article  Google Scholar 

  • Genrich JF, Bock Y (1992) Rapid resolution of crustal motion at short ranges with the global positioning system. J Geophys Res 97(B3):3261–3269

    Google Scholar 

  • Genrich JF, Bock Y (2006) Instantaneous geodetic positioning with 10–50 Hz GPS measurements: noise characteristics and implications for monitoring networks. J Geophys Res 111(B03403). Doi 10.1029/2005JB003617

  • Georgiadou Y, Kleusberg A (1988) On carrier signal multipath effects in relative GPS positioning. Manuscripta Geodaetica 13:172–179

    Google Scholar 

  • Gutierrez R, Gibeaut JC, Smyth RC, Hepner TL, Andrews, JR, Weed C, Gutelius W, Mastin M (2001) Precise airborne lidar surveying for coastal research and geohazards applications. Int Arch Photogram Remote Sensing XXXIV-3/W4:185–192

  • Herring T (2002) Documentation for the TRACK kinematic GPS analysis software, version 1.07. Massachusetts Institute of Technology

  • Hofton MA, Blair JB, Minster J-B, Ridgway JR, Williams NP, Bufton JL, Rabine DL (2000) An airborne scanning laser altimetry survey of Long Valley, California. Int J Remote Sensing 21(12):2413–2437

    Article  Google Scholar 

  • Krabill WB, Martin CF (1987) Aircraft positioning using global positioning system carrier phase data. Navigation 34(1):1–21

    Google Scholar 

  • Krabill WB, Thomas R, Jezek K, Kuivenen K, Manizade S (1995) Greenland ice sheet thickness changes measured by laser altimetry. Geophys Res Lett 22(17):2341–2344

    Article  Google Scholar 

  • Macmillan DS (1995) Atmospheric gradients from very long baseline interferometry observations. Geophys Res Lett 22(9):1041–1044

    Article  Google Scholar 

  • Mader GL (1986) Dynamic positioning using GPS carrier phase measurements. Manuscripta Geodaetica 11:272–277

    Google Scholar 

  • Mader GL, Lucas JR (1989) Verification of airborne positioning using global positioning system carrier phase measurements. J Geophys Res 94(B8):10175–10181

    Google Scholar 

  • Mader GL, MacKay JR (1997) Calibration of GPS antennas. 1996 Analysis Center Workshop, International GPS Service Central Bureau, Jet Propulsion Laboratory, Pasadena, California

  • Mao A, Harrison CGA, Dixon TH (1999) Noise in GPS coordinate time series. J Geophys Res 104(B2):2797–2816

    Article  Google Scholar 

  • Parker RL (1994) Geophysical inverse theory. Princeton University Press, Princeton

    Google Scholar 

  • Phillips HA, Allison I, Coleman R, Hyland G, Morgan PJ, Young NW (1998) Comparison of ERS satellite radar altimeter heights with GPS-derived heights on the Amery Ice Shelf, East Antarctica. Ann Glaciol 27:19–24

    Google Scholar 

  • Pilgrim B, Kaplan DT (1998) A comparison of estimators for 1/f noise. Physica D 114:108–122

    Article  Google Scholar 

  • Prescott WH, Savage JC, Svarc JL, Manaker D (2001) Deformation across the Pacific-North American plate boundary near San Fransisco, California. J Geophys Res 106(B4):6673–6682

    Article  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C. Cambridge University Press, New York

    Google Scholar 

  • Ridgway JR, Minster J-B, Williams NP, Bufton JL, Krabill WB (1997) Airborne laser altimeter survey of Long Valley, California. Geophys J Int 131:267–280

    Article  Google Scholar 

  • Rowlands DD, Pavlis DE, Lemoine FG, Neumann GA, Luthcke SB (1999) The use of laser altimetry in the orbit and attitude determination of Mars Global Surveyor. Geophys Res Lett 26:1191–1194

    Article  Google Scholar 

  • Saka MH, Kavzoglu T, Ozsamli C, Alkan RM (2004) Sub-meter accuracy for stand alone GPS positioning in hydrographic surveying. J Navigation 57:135–144

    Article  Google Scholar 

  • Williams SDP, Bock Y, Fang P, Jamason P, Nikolaidis RM, Miller M, Johnson DJ (2004) Error analysis of continuous GPS positioin time series. J Geophys Res 109(B03412): Doi:10.1029/2003JB002741

  • Zhang J, Bock Y, Johnson H, Fang P, Williams S, Genrich J, Wdowinski S, Behr J (1997) Southern California permanent GPS geodetic array: error analysis of daily position estimates and site velocities. J Geophys Res 102(B8):18035–18055

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian A. Borsa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borsa, A.A., Minster, JB., Bills, B.G. et al. Modeling long-period noise in kinematic GPS applications. J Geod 81, 157–170 (2007). https://doi.org/10.1007/s00190-006-0097-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-006-0097-x

Keywords

Navigation