Skip to main content
Log in

Optimal dynamic multi-keyword bidding policy of an advertiser in search-based advertising

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

Sponsored search advertisement allows advertisers to target their messages to appropriate customer segments at low costs. While search engines are interested in auction mechanisms that boost their revenues, advertisers seek optimal bidding strategies to increase their net sale revenues for multiple keywords under strict daily budget constraints in an environment where keyword query arrivals, competitor bid amounts, and user purchases are random. We focus on the advertiser’s question and formulate her optimal intraday dynamic multi-keyword bidding problem as a continuous-time stochastic optimization problem. We solve the problem, characterize an optimal policy, and bring a numerical algorithm for implementation. We also illustrate our optimal bidding policy and its benefits over heuristic solutions on numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abhishek V, Hosanagar K (2013) Optimal bidding in multi-item multislot sponsored search auctions. Oper Res 61(4):855–873

    Article  MathSciNet  MATH  Google Scholar 

  • Abrams Z, Mendelevitch O, Tomlin J (2007) Optimal delivery of sponsored search advertisements subject to budget constraints. In: Proceedings of the 8th ACM Conference on Electronic Commerce, EC ’07, pp 272–278. ACM

  • Bae J, Kagel JH (2019) An experimental study of the generalized second price auction. Int J Ind Organ 63:44–68

    Article  Google Scholar 

  • Balseiro SR, Besbes O, Weintraub GY (2015) Repeated auctions with budgets in ad exchanges: Approximations and design. Manage Sci 61(4):864–884

    Article  Google Scholar 

  • Borgs C, Chayes J, Immorlica N, Jain K, Etesami O, Mahdian M (2007) Dynamics of bid optimization in online advertisement auctions. In: Proceedings of the 16th International Conference on World Wide Web, WWW ’07, pp 531–540. ACM

  • Boulatov A, Severinov S (2021) Optimal and efficient mechanisms with asymmetrically budget constrained buyers. Games Econom Behav 127:155–178

    Article  MathSciNet  MATH  Google Scholar 

  • Brubach B, Sankararaman KA, Srinivasan A, Xu P (2016) New algorithms, better bounds, and a novel model for online stochastic matching. In ESA

  • Chaitanya N, Narahari Y (2012) Optimal equilibrium bidding strategies for budget constrained bidders in sponsored search auctions. Oper Res Int J 12(3):317–343

    Article  MATH  Google Scholar 

  • Cholette S, Özlük Ö, Parlar M (2012) Optimal keyword bids in search-based advertising with stochastic advertisement positions. J Optim Theory Appl 152(1):225–244

    Article  MathSciNet  MATH  Google Scholar 

  • Dayanik S, Parlar M (2013) Dynamic bidding strategies in search-based advertising. Ann Oper Res 211(1):103–136

    Article  MathSciNet  MATH  Google Scholar 

  • Devanur N, Jain K, Sivan B, Wilkens C (2019) Near optimal online algorithms and fast approximation algorithms for resource allocation problems. J ACM 66(1):1–41

    Article  MathSciNet  MATH  Google Scholar 

  • Devanur NR, Hayes TP (2009) The adwords problem: online keyword matching with budgeted bidders under random permutations. In: Proceedings of the 10th ACM Conference on Electronic Commerce, EC ’09, pp 71–78. ACM

  • Feldman J, Muthukrishnan S, Pal M, Stein C (2007) Budget optimization in search-based advertising auctions. In: Proceedings of the 8th ACM Conference on Electronic Commerce, EC ’07, pp 40–49. ACM

  • Feldman J, Henzinger M, Korula N, Mirrokni VS, Stein C (2010) Online stochastic packing applied to display ad allocation. In: De Berg M, Meyer U (eds) Algorithms - ESA 2010. Springer, Berlin, pp 182–194

    Chapter  Google Scholar 

  • Goel A, Mahdian M, Nazerzadeh H, Saberi A (2010) Advertisement allocation for generalized second-pricing schemes. Oper Res Lett 38(6):571–576

    Article  MathSciNet  MATH  Google Scholar 

  • Goel G, Mehta A (2008) Online budgeted matching in random input models with applications to Adwords. In Proceedings of the nineteenth annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’08, pp 982–991. SIAM

  • Hummel P (2018) Hybrid mechanisms for Vickrey–Clarke–Groves and generalized second-price bids. Internat J Game Theory 47(1):331–350

    Article  MathSciNet  MATH  Google Scholar 

  • Iyer K, Johari R, Sundararajan M (2014) Mean field equilibria of dynamic auctions with learning. Manage Sci 60(12):2949–2970

    Article  Google Scholar 

  • Jaillet P, Lu X (2014) Online stochastic matching: New algorithms with better bounds. Math Oper Res 39(3):624–646

    Article  MathSciNet  MATH  Google Scholar 

  • Jansen B, Mullen T (2008) Sponsored search: An overview of the concept, history, and technology. Int J Electron Bus 6(2):114–131

    Article  Google Scholar 

  • Kitts B, Leblanc B (2004) Optimal bidding on keyword auctions. Electron Mark 14(3):186–201

    Article  Google Scholar 

  • Kotowski MH (2020) First-price auctions with budget constraints. Theor Econ 15(1):199–237

    Article  MathSciNet  MATH  Google Scholar 

  • Küçükaydın H, Selçuk B, Özlük Ö (2020) Optimal keyword bidding in search-based advertising with budget constraint and stochastic ad position. J Oper Res Soc 71(4):566–578

    Article  Google Scholar 

  • Lee D, Zioło P, Han W, Powell WB (2017) Optimal online learning in bidding for sponsored search auctions. In 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp 1–8

  • Mahdian M, Nazerzadeh H, Saberi A (2012) Online optimization with uncertain information. ACM Trans Algorith 8(1):1–29

    Article  MathSciNet  MATH  Google Scholar 

  • Maillé P, Markakis E, Naldi M, Stamoulis GD, Tuffin B (2012) Sponsored search auctions: An overview of research with emphasis on game theoretic aspects. Electron Commer Res 12(3):265–300

    Article  Google Scholar 

  • Mehta A, Saberi A, Vazirani U, Vazirani V (2007) AdWords and generalized online matching. J ACM 54(5):22–es

  • Naor J, Wajc D (2015) Near-optimum online ad allocation for targeted advertising. In Roughgarden T, Feldman M, Schwarz M (eds) Proceedings of the sixteenth ACM Conference on Economics and Computation, EC ’15, pp 131–148. ACM

  • Özlük Ö (2011) Revenue management: A practical pricing perspective, chapter search engine advertising: an overview from a revenue management angle, pp 153–165. Palgrave Macmillan London

  • Özlük Ö, Cholette S (2007) Allocating expenditures across keywords in search advertising. J Reven Pricing Manage 6(4):347–356

    Article  Google Scholar 

  • Perlich C, Dalessandro B, Hook R, Stitelman O, Raeder T, Provost F (2012) Bid optimizing and inventory scoring in targeted online advertising. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’12, pp 804–812. ACM

  • Pin F, Key P (2011) Stochastic variability in sponsored search auctions: Observations and models. In: Proceedings of the 12th ACM Conference on Electronic Commerce, EC ’11, pp 61–70. ACM

  • Qin T, Chen W, Liu T (2015) Sponsored search auctions: Recent advances and future directions. ACM Trans Intell Syst Technol 5(4):1–34

    Article  Google Scholar 

  • Rusmevichientong P, Williamson DP (2006) An adaptive algorithm for selecting profitable keywords for search-based advertising services. In: Proceedings of the 7th ACM Conference on Electronic Commerce, EC ’06, pp 260–269. ACM

  • Selçuk B, Özlük Ö (2013) Optimal keyword bidding in search-based advertising with target exposure levels. Eur J Oper Res 226(1):163–172

    Article  MathSciNet  MATH  Google Scholar 

  • Skiera B, Abou NN (2013) Prosad: A bidding decision support system for profit optimizing search engine advertising. Market Sci 32(2):213–220

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semih O. Sezer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 220 KB)

Appendix: Supplementary proofs

Appendix: Supplementary proofs

Proof of the equality in (7)

For a given admissible bidding policy, since \( \sum _{n\ge 1} b_n R_n Z_n 1_{\{\tau _n \le T\}} \) is bounded by B, we have

$$\begin{aligned} \begin{aligned} \mathbb {E}\Big [ \sum _{n\ge 1} (W_n-b_n R_n ) Z_n 1_{\{\tau _n \le T\}} \Big ]&= \mathbb {E}\Big [ \sum _{n\ge 1} W_n Z_n 1_{\{\tau _n \le T\}} \Big ] - \mathbb {E}\Big [ \sum _{n\ge 1} b_n R_n Z_n 1_{\{\tau _n \le T\}} \Big ] \\&= \sum _{n\ge 1} \mathbb {E}[ W_n Z_n 1_{\{\tau _n \le T\}} ] - \sum _{n\ge 1} \mathbb {E}[ b_n R_n Z_n 1_{\{\tau _n \le T\}} ], \end{aligned} \end{aligned}$$
(36)

where the second line follows by the monotone convergence theorem applied to each expected random sum separately. Note that

$$\begin{aligned} \mathbb {E}[ W_n Z_n 1_{\{\tau _n \le T\}} ] = \mathbb {E}[ 1_{\{\tau _n \le T\}} \mathbb {E}[ W_n Z_n \mid {\mathcal {F}}_{\tau _n} ] ] = \mathbb {E}[ 1_{\{\tau _n \le T\}} \mu _{\kappa _n} G_{\kappa _n} (b_n) ], \end{aligned}$$
(37)

due to the conditional independence of \(W_n\), the conditional expectations in (3), and the conditional distributions in (1). Similarly, we write

$$\begin{aligned} \mathbb {E}[ b_n R_n Z_n 1_{\{\tau _n \le T\}} ] = \mathbb {E}[ 1_{\{\tau _n \le T\}} b_n \mathbb {E}[ R_n Z_n \mid {\mathcal {F}}_{\tau _n} ] ] = \mathbb {E}[ 1_{\{\tau _n \le T\}} b_n \rho _{\kappa _n} G_{\kappa _n} (b_n) ], \end{aligned}$$
(38)

thanks to (1) and (2). Using now (37-38) in (36) yields

$$\begin{aligned} \begin{aligned}&\mathbb {E}\Big [ \sum _{n\ge 1} (W_n-b_n R_n ) Z_n 1_{\{\tau _n \le T\}} \Big ] \\&\quad = \sum _{n\ge 1} \mathbb {E}[ 1_{\{\tau _n \le T\}} \mu _{\kappa _n} G_{\kappa _n} (b_n) ] - \sum _{n\ge 1} \mathbb {E}[ 1_{\{\tau _n \le T\}} b_n \rho _{\kappa _n} G_{\kappa _n} (b_n) ] \\&\quad = \mathbb {E}\Big [ \sum _{n\ge 1} 1_{\{\tau _n \le T\}} \mu _{\kappa _n} G_{\kappa _n} (b_n) \Big ] - \mathbb {E}\Big [ \sum _{n\ge 1} 1_{\{\tau _n \le T\}} b_n \rho _{\kappa _n} G_{\kappa _n} (b_n) \Big ] \\&\quad = \mathbb {E}\Big [ \sum _{n\ge 1} 1_{\{\tau _n \le T\}} ( \mu _{\kappa _n} - b_n \rho _{\kappa _n}) G_{\kappa _n} (b_n) \Big ] \end{aligned} \end{aligned}$$
(39)

establishing (7). In (39), the second equality is by the monotone convergence theorem (applied to each expectation), and the last equality follows simply by the boundedness of \(\sum _{n\ge 1} 1_{\{\tau _n \le T\}} b_n \rho _{\kappa _n} G_{\kappa _n} (b_n)\) (by B). \(\square \)

Proof of Proposition 1

Monotonicity of \(\mathcal {D}[f]\) in f is obvious, and the non-negativity of \(D[f_1]\) follows after taking \(b_1= 0\) in (10). To prove the upper bound \(\mathcal {D}[f_2] (\cdot , T) \le \gamma \lambda T\), we observe that

$$\begin{aligned} \mathcal {D}[f](B,&T) \le \sup _{b_1 \in \mathcal {F}_{\tau _1}} \mathbb {E}\, 1_{\{\tau _1 \le T\}} \Big [ (W_1-b_1 R_1)Z_1 + \gamma \lambda (T-\tau _1) \Big ] \\&= \sup _{b_1 \in \mathcal {F}_{\tau _1}} \mathbb {E}\, 1_{\{\tau _1 \le T\}} \Big [ (\mu _{\kappa _1}-b_1 \rho _{\kappa _1} ) G_{\kappa _1}(b_1) + \gamma \lambda (T-\tau _1) \Big ] \\&\le \mathbb {E}\, 1_{\{\tau _1 \le T\}} \Big [ \gamma + \gamma \lambda (T-\tau _1) \Big ] = \gamma \int _0^T \lambda e^{-\lambda t } [1+ \lambda (T-t) ] dt = \gamma \lambda T, \end{aligned}$$

in which the second line follows by conditioning on \(\mathcal {F}_{\tau _1}\), the inequality in the third line is by related arguments on the mapping \(b \mapsto (\mu _k - b \rho _k)G_k(b)\) and the definition of \(\gamma \) in Remark 3, and the very last equality is simply by integration (by parts). \(\square \)

Proof of Proposition 2

For notational convenience, let us define for \(1 \le k \le K\)

$$\begin{aligned}&L_k[f] (b,B,T) := f(B,T) + M_k [f](b,B,T) \quad \text {and}\quad \\&\quad L^*_k[f] (B,T) := f(B,T) + M^*_k [f](B,T), \end{aligned}$$

with \(M_k\) and \(M^*_k \) defined in (12-13). It is easy to verify that the mappings \(B \mapsto L^*_k[f] (B,\cdot )\) and \(T \mapsto L^*_k[f] (\cdot ,T)\) are non-decreasing under the given assumptions (on the monotonicity of f in its arguments). Since

$$\begin{aligned} \mathcal {D}[f] (B,T) = \int _0^T \sum _{k=1}^K \lambda _k e^{-\lambda u } L^*_k[f] (B,T-u) du, \end{aligned}$$

it follows that \(B \mapsto \mathcal {D}[f] (B,\cdot )\) and \(T \mapsto \mathcal {D}[f] (\cdot ,T)\) are again non-decreasing. This proves the non-negativity of the differences in (16) and (17).

The prove the upper bound in (16), we note that, for \(T_1 < T_2\), we have

$$\begin{aligned} \mathcal {D}[f] (B,T_2) - \mathcal {D}[f] (B,T_1)= & {} ( e^{- \lambda T_2} - e^{- \lambda T_1}) \int _0^{T_1} \sum _{k = 1}^K \lambda _k e^{ \lambda u } L^*_k[f](B,u) du \nonumber \\{} & {} + e^{- \lambda T_2} \int _{T_1}^{T_2} \sum _{k = 1}^K \lambda _k e^{ \lambda u } L^*_k[f](B,u) du \nonumber \\\le & {} \int _{T_1}^{T_2} \sum _{k = 1}^K \lambda _k L^*_k[f](B,u) du. \end{aligned}$$
(40)

It is easy to verify that \( L^*_k[f] (B,T) \le \mu _k + \Vert f\Vert \le {\bar{\mu }} + \Vert f\Vert \). Hence, we obtain \( \mathcal {D}[f] (B,T_2) - \mathcal {D}[f] (B,T_1) \le \lambda ({\bar{\mu }} + \Vert f\Vert ) (T_2 - T_1) \).

To establish the second claim, let \(B_1 < B_2\) be two budget levels, and for fixed T, let \(b_2 = b^*_k [f] (B_2,T)\) denote the maximum bid in (14) for a fixed k with the budget level \(B_2\). Note that \(b_1 = \frac{B_1}{B_2} b_2 < b_2\) is a feasible bid for the budget \(B_1\), and we have \(b_2 - b_1 = \frac{(B_2-B_1)}{B_2} b_2 \le B_2 - B_1\). Then, we write

$$\begin{aligned} L^*_k[f](B_2,T)= & {} (1-G_k(b_2)) f(B_2 , T) + G_k(b_2) \Big [ \mu _k - \rho _k b_2 \nonumber \\{} & {} + \int _0^1 f(B_2- r b_2, T) H_k(dr)\Big ] \nonumber \\\le & {} (1-G_k(b_2)) ( f(B_1 , T) + \alpha _f (B_2-B_1) ) \nonumber \\{} & {} + G_k(b_2) \Big [ \mu _k - \rho _k b_1 + \int _0^1 f(B_1- r b_1, T) H_k(dr) + \alpha _f (B_2-B_1) \Big ] \nonumber \\= & {} \alpha _f (B_2-B_1) + (1-G_k(b_2)) f(B_1 , T) \nonumber \\{} & {} + G_k(b_2) \Big [ \mu _k - \rho _k b_1 + \int _0^1 f(B_1- r b_1, T) H_k(dr) \Big ] \nonumber \\\le & {} \alpha _f (B_2-B_1) + L_k[f](b_1,B_1,T) + \alpha _G(b_2 - b_1) ({\bar{\mu }} + \Vert f\Vert ) \nonumber \\\le & {} \alpha _f (B_2-B_1) + L^*_k[f](B_1,T) + \alpha _G(B_2 - B_1) ({\bar{\mu }} + \Vert f\Vert ) \nonumber \\= & {} L^*_k[f](B_1,T) + (B_2-B_1) \big [ \alpha _f + \alpha _G ({\bar{\mu }} + \Vert f\Vert ) \big ]. \end{aligned}$$
(41)

Next, we consider the difference

$$\begin{aligned} \mathcal {D}[f](B_2,T) - \mathcal {D}[f](B_1,T)&= e^{- \lambda T } \int _{0}^{T } \sum _{k = 1}^K \lambda _k e^{ \lambda u } \big [ L^*_k[f](B_2,u)\\&\quad -L^*_k[f](B_1,u) \big ] du, \end{aligned}$$

and using (41), we obtain \(\mathcal {D}[f](B_2,T) - \mathcal {D}[f](B_1,T) \le \)

$$\begin{aligned}&e^{- \lambda T } \int _{0}^{T } \sum _{k = 1}^K \lambda _k e^{ \lambda u } (B_2 - B_1) \big [ \alpha _f + \alpha _G ({\bar{\mu }} + \Vert f\Vert ) \big ] du \\&\quad \le (B_2 - B_1) (1- e^{ - \lambda T_{\max } } ) \big [ \alpha _f + \alpha _G ({\bar{\mu }} + \Vert f\Vert ) \big ] \end{aligned}$$

giving us the upper bound in (17). \(\square \)

Proof of Proposition 3

Because \({\underline{U}}_0 (\cdot ,\cdot ) = 0 \le {\overline{U}}_0(B,T) = \gamma \lambda T\), Proposition 1 implies that \(0 \le {\underline{U}}_1 \le {\overline{U}}_1 \le \gamma \lambda T \). Let us now assume that \({\underline{U}}_{n-1} \le {\underline{U}}_{n} \le {\overline{U}}_{n} \le {\overline{U}}_{n-1} \) for some \(n\ge 1\). Then, again by Proposition 1, we have \(\mathcal {D}[{\underline{U}}_{n-1}] \le \mathcal {D}[{\underline{U}}_{n}] \le \mathcal {D}[ {\overline{U}}_{n}] \le \mathcal {D}[{\overline{U}}_{n-1}] \), and together with the induction hypothesis, this yields \( {\underline{U}}_{n-1} \le {\underline{U}}_{n} \le {\underline{U}}_{n+1} \le {\overline{U}}_{n+1} \le {\overline{U}}_{n} \le {\overline{U}}_{n-1}\). Hence, by induction we conclude that \(( {\underline{U}}_n (\cdot ,\cdot ) )_{n \ge 0}\) and \(( {\overline{U}}_n (\cdot ,\cdot ) )_{n \ge 0}\) are non-decreasing and non-increasing, respectively, and the collection \(( {\underline{U}}_n (\cdot ,\cdot ) )_{n \ge 0}\) is bounded from above by \(( {\overline{U}}_n (\cdot ,\cdot ) )_{n \ge 0}\).

Let \({\underline{U}}_{\infty } \) denote the pointwise limit of the monotone sequence \(({\underline{U}}_{n})_{n \ge 0}\). Because the operator \(\mathcal {D}\) is a contraction mapping, \( \Vert {\underline{U}}_{\ell +1} - {\underline{U}}_{\ell } \Vert = \Vert \mathcal {D}[{\underline{U}}_{\ell }] - \mathcal {D}[{\underline{U}}_{\ell -1}] \Vert \le (1-e^{-\lambda T_{\text {max}}}) \Vert {\underline{U}}_{\ell } - {\underline{U}}_{\ell -1} \Vert \le \ldots \le (1-e^{-\lambda T_{\text {max}}})^\ell \; \Vert {\underline{U}}_1 \Vert , \) using which we obtain

$$\begin{aligned} \Vert {\underline{U}}_{m+n}\!\!-\!\!{\underline{U}}_{n} \Vert \!\!\le \!\!\sum _{\ell =n}^{m+n-1} \Vert {\underline{U}}_{\ell +1} \!\!-\!\! {\underline{U}}_{\ell } \Vert \le \Vert {\underline{U}}_1 \Vert \!\!\sum _{\ell = n}^{m+n-1} (1-e^{-\lambda T_{\text {max}}})^\ell \text {for every }m,n \!\!\ge \!\! 0, \end{aligned}$$

and this gives \( 0 \le {\underline{U}}_{\infty } (B,T) - {\underline{U}}_{n} (B,T) = \lim _{m \rightarrow \infty } {\underline{U}}_{m+n} (B,T) - {\underline{U}}_{n} (B,T) \le \Vert {\underline{U}}_1 \Vert \lim _{m \rightarrow \infty } \sum _{\ell = n}^{m+n-1} (1-e^{-\lambda T_{\text {max}}})^\ell \) \( \le \gamma \lambda T_{\text {max}} \sum _{\ell = n}^{\infty } (1-e^{-\lambda T_{\text {max}}})^\ell = \gamma \lambda T_{\text {max}} (1-e^{-\lambda T_{\text {max}}})^n e^{\lambda T_{\text {max}}}\). Since this is true for all \((B,T) \in \Delta \), we have \(\Vert {\underline{U}}_{\infty } - {\underline{U}}_{n} \Vert \le \gamma \lambda T_{\text {max}} (1-e^{-\lambda T_{\text {max}}})^n e^{\lambda T_{\text {max}}}\), which proves that the convergence of \({\underline{U}}_{n}\) to \({\underline{U}}_{\infty }\) is uniform on \(\Delta \) as \(n \rightarrow \infty \). In the arguments above, if we replace \({\underline{U}}\) with \({\overline{U}}\), then we obtain the same upper bound for \( {\overline{U}}_{n} (B,T) - {\overline{U}}_{\infty } (B,T) \ge 0\). This shows that the \({\overline{U}}_{n} \)’s converge to \( {\overline{U}}_{\infty } (B,T)\) also uniformly with the same error bound. Because \({\overline{U}}_{n}\)’s and \({\underline{U}}_{n}\)’s are continuous, their uniform limits \({\overline{U}}_{\infty }\) and \({\underline{U}}_{\infty }\), respectively, are also continuous on \(\Delta \).

The uniform convergence of \(({\underline{U}}_n)_{n \ge 0}\) and \(({\overline{U}}_n)_{n \ge 0}\) also imply that as \(n \rightarrow \infty \), we have \( M^*_{k} [{\overline{U}}_n] (\cdot ,\cdot )\) \( \rightarrow M^*_{k} [{\overline{U}}_\infty ] (\cdot ,\cdot )\) and \( M^*_{k} [{\underline{U}}_n] (\cdot ,\cdot ) \rightarrow M^*_{k} [{\underline{U}}_\infty ] (\cdot ,\cdot )\) for each \(1 \le k \le K\), and they are bounded from above by \(\max _k M^*_{k} [{\overline{U}}_0] (B_{\text {max}},T_{\text {max}}) < \infty \). Then, by bounded convergence theorem we obtain

$$\begin{aligned} {\underline{U}}_\infty (B,T)= & {} \lim _n {\underline{U}}_{n+1} (B,T) = \lim _n \mathcal {D}[ {\underline{U}}_{n}] (B,T) = \lim _n \mathbb {E}\, 1_{\{\tau _1 \le T\}} \Big [ {\underline{U}}_{n}(B, T-\tau _1) \\{} & {} + M^*_{\kappa _1} [{\underline{U}}_{n}] (B,T-\tau _1) \Big ] \\= & {} \mathbb {E}\, 1_{\{\tau _1 \le T\}} \Big [ {\underline{U}}_{\infty }(B, T-\tau _1) + M^*_{\kappa _1} [{\underline{U}}_{\infty }] (B,T-\tau _1) \Big ] = \mathcal {D}[{\underline{U}}_{\infty }] (B,T), \end{aligned}$$

which shows that \({\underline{U}}_{\infty }\) is a fixed point of \(\mathcal {D}\). Replicating the arguments above with \({\overline{U}}_{\infty }= \lim _n {\overline{U}}_{n}\), we observe that \({\overline{U}}_{\infty }\) is also a fixed point of the operator \(\mathcal {D}\). Finally, the uniqueness of the fixed point (see Lemma 1) implies that \({\underline{U}}_{\infty } = {\overline{U}}_{\infty } \). \(\square \)

Proof of Lemma 2

The inequality in (26) becomes an equality for \(j=1\). Assume that it holds for some \(1 \le j \le n \), and let us prove it for \(j+1\). Note that the right hand side of (26) can be decomposed as

$$\begin{aligned}{} & {} \mathbb {E}\sum _{i=1}^{n-j} (W_i-b_i R_i) Z_i 1_{\{\tau _i \le T\}} \nonumber \\{} & {} +\! \mathbb {E}\Big [1_{\{\tau _{n-j+1} \!\le \! T\}} \!\Big ( (W_{n-j\!+\!1}-b_{n-j\!+\!1} R_{n-j+1}) Z_{n-j+1} \!\!+\!\! {\underline{U}}_{j-1} (B_{\tau _{n+j+1}}\!, T-\tau _{n-j+1}) \!\Big )\!\Big ].\nonumber \\ \end{aligned}$$
(42)

Conditioning on \(\mathcal {F}_{\tau _{n-j+1}}\) and using the conditional distributions of \(W_{n-j+1}, R_{n-j+1}\), and \(Z_{n-j+1}\), the second expectation in (42) above becomes

$$\begin{aligned} \begin{aligned}&\mathbb {E}\Big [1_{\{\tau _{n-j+1} \le T\}} \Big ( (\mu _{\kappa _{n-j+1}} - b_{n-j+1} \cdot \rho _{n-j+1} )G_{\kappa _{n-j+1}} (b_{n-j+1}) \\&\quad + {\underline{U}}_{j-1} (B_{\tau _{n-j}}, T-\tau _{n-j+1}) (1- G_{\kappa _{n-j+1}} (b_{n-j+1})) \\&\quad + G_{\kappa _{n-j+1}} (b_{n-j+1}) \int _0^1 {\underline{U}}_{j-1} (B_{\tau _{n-j}}- r b_{n-j+1}, T-\tau _{n-j+1}) h_{ \kappa _{n-j+1} } (r) dr \Big )\Big ] \\&= \mathbb {E}\Big [1_{\{\tau _{n-j+1} \le T\}} \Big ( {\underline{U}}_{j-1} (B_{\tau _{n-j}}, T-\tau _{n-j+1}) \\&\quad + M_{\kappa _{n-j+1}}[{\underline{U}}_{j-1}] (b_{n-j+1}, B_{\tau _{n-j}} , T-\tau _{n-j+1}) \Big )\Big ] \\&\!\le \! \mathbb {E}\Big [1_{\{\tau _{n-j+1} \!\le \! T\}} \!\Big ( {\underline{U}}_{j-1} (B_{\tau _{n-j}}, T-\tau _{n-j+1}) \!+\! M^*_{\kappa _{n-j+1}}[{\underline{U}}_{j-1}] (B_{\tau _{n-j}}\!, T\!-\!\tau _{n-j+1}) \!\Big ) \!\Big ] \\&= \mathbb {E}\Big [1_{\{\tau _{n-j} \le T\}} \mathbb {E}\Big [ 1_{\{\tau _{n-j+1} \le T\}} \Big ( {\underline{U}}_{j-1} (B_{\tau _{n-j}}, T-\tau _{n-j+1}) \\&\quad + M^*_{\kappa _{n-j+1}}[{\underline{U}}_{j-1}] (B_{\tau _{n-j}} , T-\tau _{n-j+1}) \Big ) \Big | \mathcal {F}_{\tau _{n-j}} \vee \sigma (B_{\tau _{n-j}}) \Big ]\Big ] \\&= \mathbb {E}\Big [ 1_{ \{ \tau _{n-j} \le T \} } \; D[{\underline{U}}_{j-1}] (B_{\tau _{n-j}} , T - \tau _{n-j}) \Big ] \end{aligned} \end{aligned}$$
(43)

where the last line is due to strong Markov property. Because \(\mathcal {D}[{\underline{U}}_{j-1}] = {\underline{U}}_j \), combining (42-43) with the induction hypothesis yields

$$\begin{aligned} \mathbb {E}\Big [ \sum _{i=1}^n (W_i-b_i R_i) Z_i 1_{\{\tau _i \le T\}} \big ]\le & {} \mathbb {E}\big [ \sum _{i=1}^{n-j+1} (W_i-b_i R_i) Z_i 1_{\{\tau _i \le T\}} \nonumber \\{} & {} + 1_{ \{ \tau _{n-j+1} \le T \} } \, {\underline{U}}_{j-1} (B_{\tau _{n+j+1}}, T-\tau _{n-j+1}) \Big ]\nonumber \\\le & {} \mathbb {E}\big [ \sum _{i=1}^{n-j} (W_i-b_i R_i) Z_i 1_{\{\tau _i \le T\}} + 1_{ \{ \tau _{n-j} \le T \} } \nonumber \\{} & {} {\underline{U}}_{j} (B_{\tau _{n-j}}, T-\tau _{n-j}) \Big ], \end{aligned}$$
(44)

and this proves the inequality (26) for \(j+1\). Hence, by induction it holds for all \(1\le j \le n+1\). \(\square \)

Proof of Proposition 5

For \(n =0\), we have \( V_0 = {\underline{U}}_0 = 0\) by construction, and the summation in (28) equals zero. Hence, the claim of the proposition is obvious. Therefore, we state the proposition and prove the equalities in (28) for \(n \ge 1\).

By Lemma 2, we have for every admissible policy \((b_i)_{i \ge 1}\)

$$\begin{aligned}{} & {} \mathbb {E}\Big [ \sum _{i=1}^n (W_i-b_i R_i) Z_i 1_{\{\tau _i \le T\}} \big ]\\{} & {} \quad \le \mathbb {E}\big [ \sum _{i=1}^{n-j+1} (W_i-b_i R_i) Z_i 1_{\{\tau _i \le T\}} + 1_{ \{ \tau _{n-j+1} \le T \} } \, {\underline{U}}_{j-1} (B_{\tau _{n-j+1}}, T-\tau _{n-j+1}) \Big ] \end{aligned}$$

for \(1 \le j \le n+1\). Evaluating this inequality with \(k = n+1\) gives \( \mathbb {E}\Big [ \sum _{i=1}^n (W_i-b_i R_i) Z_i 1_{\{\tau _i \le T\}} \big ] \le {\underline{U}}_{n} (B,T)\) and this implies \(V_n (B,T) \le {\underline{U}}_n (B,T)\) for all \(n \ge 1\).

We next establish the second equality in (28) for all \(n \ge 1\). Because \({\underline{U}}_0 \equiv 0\), we have

$$\begin{aligned} {\underline{U}}_1(B,T)= & {} \mathcal {D}[{\underline{U}}_0] (B,T) = \sup _{b_1 \in \mathcal {F}_{\tau _1} } \mathbb {E}\left[ 1_{\{ \tau _1 \le T\}} \left( W_1-b_1 R_1 \right) Z_1 \right] \\= & {} \sup _{b_1 \in \mathcal {F}_{\tau _1} } \mathbb {E}\, 1_{\{ \tau _1 \le T\}} G_{\kappa _1}(b_1) \left( \mu _{\kappa _1} - b_1 \rho _{\kappa _1} \right) \\= & {} \mathbb {E}\Big [1_{\{ \tau _1 \le T\}} \left( W_1-b^*_{\kappa _1} [{\underline{U}}_{0}] (B,T- \tau _1) \cdot R_1 \right) Z_1 \Big ]\\\equiv & {} \mathbb {E}\Big [1_{\{ \tau _1 \le T\}} \left( W_1-b^{(1)}_1 R_1 \right) Z_1 \Big ], \end{aligned}$$

and this gives the second equality in (28) for \(n = 1\). Assume now that the second equality in (28) holds for some \(n\ge 1\). Then we have

$$\begin{aligned} \begin{aligned} {\underline{U}}_{n+1}(B,T)&= \mathcal {D}[{\underline{U}}_n] (B,T)\\&= \sup _{b_1 \in \mathcal {F}_{\tau _1}} \mathbb {E}\, 1_{\{\tau _1 \le T\}} \Big [(W_1-b_1 R_1)Z_1 + {\underline{U}}_n(B_{\tau _1}, T-\tau _1) \Big ] \\&= \mathbb {E}\, 1_{\{\tau _1 \le T\}} \Big [(W_1- \underbrace{b^*_{\kappa _1}[{\underline{U}}_{n}](B,T- \tau _1)}_{b^{(n+1)}_1} \cdot R_1)Z_1 + {\underline{U}}_n(B_{\tau _1}, T-\tau _1) \Big ]. \end{aligned} \end{aligned}$$
(45)

Using the induction hypothesis and the strong Markov property, we obtain

$$\begin{aligned} \begin{aligned}&\mathbb {E}\big ( 1_{\{\tau _1 \le T\}} \, {\underline{U}}_n(B_{\tau _1}, T-\tau _1) \big ) \\&\quad = \mathbb {E}\bigg ( 1_{\{\tau _1 \le T\}} \mathbb {E}\Big [ \sum _{i =1}^{n} \left( W_{i+1} -b^*_{\kappa _{i+1}} [{\underline{U}}_{n-i}]\big (B^{(n+1)}_{T_{i}}, T- T_{i+1} \big )\right. \\&\qquad \left. \cdot R_{i+1} \right) Z_{i+1} 1_{\{T_{i+1} \le T \}} \mid \mathcal {F}_{\tau _1} \vee \sigma (B_{\tau _1}) \Big ] \bigg ) \\&\quad = \mathbb {E}\bigg [ \sum _{i =2}^{n+1} \left( W_i -b^*_{\kappa _i} [{\underline{U}}_{n+1-i}] (B^{(n+1)}_{\tau _{i-1}} ,T- \tau _i) \cdot R_i \right) Z_i \, 1_{\{\tau _i \le T \}} \bigg ]\\&\quad \equiv \mathbb {E}\bigg [ \sum _{i =2}^{n+1} \left( W_i -b^{(n+1)}_i R_i \right) Z_i \, 1_{\{\tau _i \le T \}} \bigg ] . \end{aligned} \end{aligned}$$
(46)

Substituting (46) into (45) gives

$$\begin{aligned} {\underline{U}}_{n+1}(B,T)&= \mathbb {E}\bigg [ \sum _{i =1}^{n+1} \left( W_i -b^{(n+1)}_i R_i \right) Z_i \, 1_{\{\tau _i \le T \}} \bigg ] . \end{aligned}$$

This proves the second equality in (28) for \(n+1\). Hence, it holds for all \(n \ge 1\) by induction.

Clearly, \(V_n\) is an upper bound for the expected net revenue of any n-bid policy. Hence, combining all the arguments above, we now have, for any \(n \ge 1\),

$$\begin{aligned} V_n (B,T) \le {\underline{U}}_{n}(B,T) = \mathbb {E}\bigg [ \sum _{i =1}^{n} \left( W_i -b^{(n+1)}_i R_i \right) Z_i \, 1_{\{\tau _i \le T \}} \bigg ] \le V_{n}(B,T), \end{aligned}$$

and this establishes the equalities in (28). \(\square \)

Proof of Proposition 6

To prove the claim, it is sufficient to establish the identity

$$\begin{aligned} V(B,T) = \mathbb {E}\bigg [ \sum _{i=1}^n \left( W_i- b^{(\infty )}_i R_i \right) Z_i 1_{\{\tau _i \le T\}} + 1_{ \{ \tau _n \le T \} } \, V\big (B^{(\infty )}_{\tau _n}, T-\tau _n\big ) \bigg ], \end{aligned}$$
(47)

inductively for all \(n \ge 1\). When we let \(n \rightarrow \infty \), the expectation of the second term converges to zero because V is bounded (see Remark 3) and \(\mathbb {P} (\tau _n \le T) \rightarrow 0 \). Also both \(\mathbb {E}\big [ \sum _{i=1}^n W_i \cdot R_i Z_i 1_{\{\tau _i \le T\}} \big ]\) and \(\mathbb {E}\big [ \sum _{i=1}^n b^{(\infty )}_i R_i Z_i 1_{\{\tau _i \le T\}} \big ]\) convergence by monotone convergence theorem to the expectations of the corresponding infinite sums, and \(\sum _{i=1}^\infty b^{(\infty )}_i R_i Z_i 1_{\{\tau _i \le T\}} \le B\). Hence, as \(n \rightarrow \infty \), the expectation of the summation in (47) converges to the right hand side in (31).

For \(n= 1\), the expectation in (47) becomes \(\mathcal {D}[V] (B,T)\), and the equality holds since V is a fixed point of the operator \(\mathcal {D}\). Assume now that the equality holds for some \(n \ge 1\). Then

$$\begin{aligned}{} & {} \mathbb {E}\bigg [ \sum _{i=1}^{n+1} \left( W_i- b^{(\infty )}_i R_i \right) Z_i 1_{\{\tau _i \le T\}} + 1_{ \{ T_{n+1} \le T \} }\; V \big ( B^{(\infty )}_{T_{n+1}}, T-T_{n+1} \big ) \bigg ] \nonumber \\{} & {} \quad =\mathbb {E}\bigg [ \left( W_1- b^{(\infty )}_1 R_1 \right) Z_1 1_{\{\tau _1 \le T\}} \nonumber \\{} & {} \qquad + 1_{\{\tau _1 \le T\}} \, \mathbb {E}\Big [ \sum _{i=2}^{n+1} \left( W_i- b^{(\infty )}_i R_i \right) Z_i 1_{\{\tau _i \le T\}} \nonumber \\{} & {} \qquad + 1_{ \{ T_{n+1} \le T \} } V\big ( B^{(\infty )}_{T_{n+1}} , T-T_{n+1} \big ) \; \Big | \; \mathcal {F}_{\tau _1} \vee \sigma ( B^{(\infty )}_{T_{1}} )\Big ] \bigg ]. \end{aligned}$$
(48)

On the event \(\{\tau _1 \le T\}\), the conditional expectation above is equal to \(V\big (B^{(\infty )}_{\tau _1}, T-\tau _1 \big )\) by the strong Markov property and the induction hypothesis. Hence, the right hand side of the equality in (48) becomes

$$\begin{aligned} \mathbb {E}1_{\{\tau _1 \le T\}} \bigg [ \left( W_1- b^{(\infty )}_1 R_1 \right) Z_1 + V\big (B^{(\infty )}_{\tau _1}, T-\tau _1 \big ) \bigg ] = \mathcal {D}[V](B,T) = V(B,T) , \end{aligned}$$

which proves (47) for \(n+1\). Hence, (47) holds for all \(n \ge 1\) by induction, and this completes the proof. \(\square \)

Proof of Proposition 7

The identity \(f(B,0) = V(B,0)\) for \(T = 0\) is obvious. Therefore, we only give the proof for \(T> 0\). Note that for a given admissible policy \((b_i)_{i \ge 1}\) and the corresponding budget process \(\{ B_t \}_{t \in [0,T]}\), the chain rule gives

$$\begin{aligned}{} & {} \mathbb {E}\underbrace{f(B_T , 0 )}_{0} - f(B, T) \nonumber \\{} & {} \quad = \mathbb {E}\bigg [- \int _0^T f_T (B_{t-}, T-t ) dt + \sum _{i \ge 1} \big [ f(B_{\tau _i}, T-\tau _i) - f(B_{\tau _i-}, T-\tau _i) \big ] 1_{ \{ \tau _i \le T \} } \bigg ] \nonumber \\{} & {} \quad = \mathbb {E}\bigg [- \int _0^T \bigg ( \sum _{k = 1}^K \frac{\lambda _k}{\lambda } \; M^*_{k} [f] (B_{t-}, T-t) \bigg ) \lambda dt \nonumber \\{} & {} \qquad + \sum _{i \ge 1} \left[ f(B_{\tau _i}, T-\tau _i) - f(B_{\tau _i-}, T-\tau _i) \right] 1_{ \{ \tau _i \le T \} } \bigg ]. \end{aligned}$$
(49)

Because \(M^*_{k} [f] (\cdot ,\cdot )\) is continuous on \(\Delta \) and the budget process is an \(\mathbb {F}\)-adapted càdlàg process, it follows that \(\{ M^*_{k} [f] (B_{t-} ,T-t) \}_{t \in [0,T]}\) is bounded and \(\mathbb {F}\)-predictable. Therefore, in terms of the counting process \(N = \{ N_t\}_{t \ge 0}\) with \(N_t = \sum _{i \ge 1} 1_{ \{ \tau _i \le T \} }\), for \(t \ge 0\), we have

$$\begin{aligned} \begin{aligned}&\mathbb {E}\bigg [\int _0^T \bigg ( \sum _{k = 1}^K \frac{\lambda _k}{\lambda } \; M^*_{k} [f] (B_{t-}, T-t) \bigg ) \lambda dt \bigg ] \\&\quad = \mathbb {E}\bigg [ \int _{(0,T]} \bigg ( \sum _{k = 1}^K \frac{\lambda _k}{\lambda } \; M^*_{k} [f] (B_{t-}, T-t) \bigg ) d N_t \bigg ] \\&\quad = \mathbb {E}\bigg [ \sum _{i \ge 1} M^*_{\kappa _i} [f] \big ( B_{\tau _i-}, T-\tau _i \big ) \cdot 1_{ \{ \tau _i \le T \} } \bigg ] \\&\quad \ge \mathbb {E}\bigg [ \sum _{i \ge 1} M_{\kappa _i} [f] \big ( b_i,B_{\tau _i-}, T-\tau _i \big ) \cdot 1_{ \{ \tau _i \le T \} } \bigg ] \\&\quad \equiv \mathbb {E}\bigg [ \sum _{i \ge 1} G_{\kappa _i}(b_i) \Big ( \mu _{\kappa _i} - b_i \rho _{\kappa _i} + \int _0^1 f\big (B_{\tau _i-}- r b_i, T-\tau _i \big ) \, H_{\kappa _i} (\textrm{d}r) \\&\qquad - f \big ( B_{\tau _i-}, T-\tau _i \big ) \Big ) 1_{ \{ \tau _i \le T \} } \bigg ]. \end{aligned} \end{aligned}$$
(50)

Using the conditional distribution of \((Z_i,R_i)\) (with the help of the dominated convergence theorem to interchange the summation and the expectation), we obtain

$$\begin{aligned}{} & {} \mathbb {E}\Big [ \sum _{i \ge 1} \left( f\big (B_{\tau _i}, T-\tau _i \big ) - f \big (B_{\tau _i-}, T-\tau _i \big ) \right) 1_{ \{ \tau _i \le T \} } \Big ] \nonumber \\{} & {} =\mathbb {E}\bigg [\sum _{i \ge 1} G_{\kappa _i}(b_i) \!\bigg ( \int _0^1 f\!\big ( B_{\tau _i-}- r b_i, T-\tau _i \!\big ) H_{\kappa _i} (\textrm{d}r) \!-\! f \!\big ( B_{\tau _i-}, T-\tau _i \!\big ) \!\bigg ) 1_{ \{ \tau _i \!\le \! T \} } \!\bigg ].\nonumber \\ \end{aligned}$$
(51)

Inserting (50-51) into (49) yields

$$\begin{aligned} f(B,T)&\ge \mathbb {E}\bigg [ \sum _{i \ge 1} G_{\kappa _i}(b_i) \big ( \mu _{\kappa _i} - b_i \rho _{\kappa _i} \big ) \cdot 1_{ \{ \tau _i \le T \} } \bigg ]\nonumber \\&= \mathbb {E}\bigg [ \sum _{i \ge 1} \big ( W_i - b_i R_i \big ) Z_i \cdot 1_{ \{ \tau _i \le T \} } \bigg ], \end{aligned}$$
(52)

and this implies that \(f(B,T) \ge V(B,T)\) because \((b_i)_{i \ge 1}\) was an arbitrary admissible policy. In particular, with the optimal policy \(b^{(\infty )}\) (and its budget process \(B^{(\infty )}\)) given in Lemma 6, the inequalities in (50) and (52) become equalities, and this proves that \(f(B,T) = V(B,T)\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dayanik, S., Sezer, S.O. Optimal dynamic multi-keyword bidding policy of an advertiser in search-based advertising. Math Meth Oper Res 97, 25–56 (2023). https://doi.org/10.1007/s00186-022-00803-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-022-00803-y

Keywords

Mathematics Subject Classification

Navigation