Skip to main content
Log in

Minimizing the penalized probability of drawdown for a general insurance company under ambiguity aversion

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

We consider an optimal robust investment and reinsurance problem for a general insurance company which holds shares of an insurance company and a reinsurance company. It is assumed that the decision-maker is ambiguity-averse and does not have perfect information in drift terms of the investment and insurance risks. To capture the ambiguity aversion in the objective function, the criterion of this paper is to minimize a robust value involving the probability of drawdown and a penalization of model uncertainty. By using the technique of stochastic control theory and solving the corresponding boundary-value problems, the closed-form expressions of the optimal strategies are derived explicitly, and a new verification theorem is proved to show that a non-increasing solution to the Hamilton–Jacobi–Bellman equation is indeed our value function. Moreover, we examine theoretically how the level of ambiguity aversion affects the value function and optimal drift distortion. In the end, some numerical examples are exhibited to illustrate the influence of the different investment patterns on our optimal results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. \(a\wedge b\) denotes the \(\min \{a,b\}\) and \(a\vee b\) means the \(\max \{a,b\}\)

References

  • Anderson E, Hansen L, Sargent T (1999) Robustness detection and the price of risk. Working paper, University of Chicago. Available at:https://files.nyu.edu/ts43/public/research/.svn/text-base/ahs3.pdf.svn-base

  • Angoshtari B, Bayraktar E, Young VR (2016a) Optimal investment to minimize the probability of drawdown. Stochastics 88(6):946–958

  • Angoshtari B, Bayraktar E, Young VR (2016b) Minimizing the probability of lifetime drawdown under constant consumption. Insur Math Econom 69:210–223

  • Bai L, Cai J, Zhou M (2013) Optimal reinsurance policies for an insurer with a bivariate reserve risk process in a dynamic setting. Insur Math Econom 53(3):664–670

    Article  MathSciNet  Google Scholar 

  • Bayraktar E, Zhang Y (2015) Minimizing the probability of lifetime ruin under ambiguity a version. SIAM J Control Optim 53(1):58–90

    Article  MathSciNet  Google Scholar 

  • Borch K (1960) Reciprocal reinsurance treaties. Astin Bull 1:171–191

    Article  Google Scholar 

  • Borch K (1969) The optimal reinsurance treaties. Astin Bull 5:293–297

    Article  Google Scholar 

  • Browne S (1997) Survival and growth with a fixed liability: optimal portfolio in continuous time. Math Oper Res 22(2):468–493

    Article  MathSciNet  Google Scholar 

  • Cai J, Fang Y, Li Z, Willmot GE (2013) Optimal reciprocal reinsurance treaties under the joint survival probability and the joint profitable probability. J Risk Insur 80:145–168

    Article  Google Scholar 

  • Chen L, Shen Y (2018) On a new paradigm of optimal reinsurance: a stochastic Stackelberg differential game between an insurer and a reinsurer. Astin Bull 48(2):905–960

    Article  MathSciNet  Google Scholar 

  • Chen X, Landriault D, Li B, Li D (2015) On minimizing drawdown risks of lifetime investments. Insur Math Econom 65:46–54

    Article  Google Scholar 

  • Cvitanić J, Karatzas I (1995) On portfolio optimization under drawdown constrainsts. IMA Vol Math Appl 65:77–88

    MATH  Google Scholar 

  • Elie R, Touzi N (2008) Optimal lifetime consumption and investment under a drawdown constrainst. Finance Stochast 12:299–330

    Article  Google Scholar 

  • Fang Y, Qu Z (2014) Optimal combination of quota-share and stop-loss reinsurance treaties under the joint survival probability. IMA J Manag Math 25(1):89–103

    Article  MathSciNet  Google Scholar 

  • Grandell J (1991) Aspects of risk theory. Springer, New York

    Book  Google Scholar 

  • Grossman S, Zhou Z (1993) Optimal investment strategies for controlling drawdowns. Math Finance 3(3):241–276

    Article  Google Scholar 

  • Han X, Liang Z (2020) Optimal reinsurance and investment in danger-zone and safe-region. Opt Control Appl Methods 41(3):765–792

    Article  MathSciNet  Google Scholar 

  • Han X, Liang Z, Yuen KC (2018) Optimal proportional reinsurance to minimize the probability of drawdown under thinning-dependence structure. Scand Actuar J 2018(10):863–889

    Article  Google Scholar 

  • Han X, Liang Z, Zhang C (2019) Optimal proportional reinsurance with common shock dependence to minimise the probability of drawdown. Ann Actuar Sci 13(2):268–294

    Article  Google Scholar 

  • Hipp C, Taksar M (2010) Optimal non-proportional reinsurance. Insur Math Econom 47(2):246–254

    Article  MathSciNet  Google Scholar 

  • Huang C, Pages H (1992) Optimal consumption and portfolio policies with an infinite horizon: existence and convergence. Ann Appl Probab 2(1):36–64

    Article  MathSciNet  Google Scholar 

  • Huang Y, Yang X, Zhou J (2017) Robust optimal investment and reinsurance problem for a general insurance company under Heston model. Math Methods Oper Res 85(2):305–326

    Article  MathSciNet  Google Scholar 

  • Li D, Rong X, Zhao H (2015) Time-consistent reinsurance-investment strategy for an insurer and a reinsurer with mean-variance criterion under the CEV model. J Comput Appl Math 283:142–162

    Article  MathSciNet  Google Scholar 

  • Li D, Rong X, Zhao H (2016) Optimal reinsurance and investment problem for an insurer and reinsurer with jump-diffusion risk process under the Heston model. Comput Appl Math 35:533–557

  • Liang Z, Bayraktar E (2014) Optimal reinsurance and investment with unobservable claim size and intensity. Insur Math Econom 55(1):156–166

    Article  MathSciNet  Google Scholar 

  • Liang X, Young VR (2018) Minimizing the probability of ruin: optimal per-loss reinsurance. Insur Math Econom 82:181–190

    Article  MathSciNet  Google Scholar 

  • Liang Z, Bi J, Yuen KC, Zhang C (2016) Optimal mean-variance reinsurance and investment in a jump-diffusion financial market with common shock dependence. Math Methods Oper Res 84(1):155–181

    Article  MathSciNet  Google Scholar 

  • Stroock DW (1987) Lectures on stochastic analysis: diffusion theory. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Yi B, Viens F, Li Z, Zeng Y (2015) Robust optimal strategies for an insurer with reinsurance and investment under benchmark and mean-variance criteria. Scand Actuar J 2015(8):725–751

    Article  MathSciNet  Google Scholar 

  • Yuan Y, Liang Z, Han X (2022) Robust reinsurance contract with asymmetric information in a stochastic Stackelberg differential game. Scand Actuar J 2022(4):328–355

    Article  MathSciNet  Google Scholar 

  • Zeng Y, Li D, Gu A (2016) Robust equilibrium reinsurance-investment strategy for a mean-variance insurer in a model with jumps. Insur Math Econom 66:138–152

    Article  MathSciNet  Google Scholar 

  • Zhao H, Weng C, Shen Y, Zeng Y (2017a) Time-consistent investment-reinsurance strategies towards joint interests of the insurer and the reinsurer under CEV models. Sci China Math 60(2):317–344

  • Zhou J, Yang X, Huang Y (2017b) Robust optimal investment and proportional reinsurance toward joint interests of the insurer and the reinsurer. Commun Stat Theory Methods 46(21):10733–10757

Download references

Funding

The authors would like to thank the associate editor and anonymous referees for their careful reading and helpful comments on an earlier version of this paper, which led to a considerable improvement of the presentation of the work. This research was supported by the National Natural Science Foundation of China (Grant No. 12071224), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 22KJB110021), and the Startup Foundation for Introducing Talent of NUIST (Grant No. 1521182201001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibin Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Auxiliary functions

The functions \(g_{1i}(x,m)\) and \(f_{1i}(y)~(i=1,2,3)\) are given by

$$\begin{aligned} \left\{ \begin{aligned} g_{11}(x,m)&=\displaystyle \int _{\kappa m}^{x}\exp \bigg \{\int _{\kappa m}^{y}\xi _3(w)dw\bigg \}dy,\\ g_{12}(x,m)&=\displaystyle \int _{\kappa m}^{\kappa m \vee x_1}\exp \bigg \{\int _{\kappa m}^{y}\xi _3(w)dw\bigg \}dy\\&\quad +\displaystyle \int _{\kappa m\vee x_1}^{x}\exp \bigg \{\bigg (\int _{\kappa m}^{\kappa m\vee x_1}\xi _3(w)+ \int _{\kappa m\vee x_1}^{y}\xi _2(w) \bigg )dw\bigg \}dy,\\ g_{13}(x,m)&=\displaystyle \int _{\kappa m}^{\kappa m \vee x_1}\exp \bigg \{\int _{\kappa m}^{y}\xi _3(w)dw\bigg \}dy\\&\quad +\displaystyle \int _{\kappa m\vee x_1}^{\kappa m\vee x_2}\exp \bigg \{\bigg (\int _{\kappa m}^{\kappa m\vee x_1}\xi _3(w)+\int _{\kappa m\vee x_1}^{y}\xi _2(w)\bigg )dw\bigg \}dy\\&\quad +\displaystyle \int _{\kappa m\vee x_2}^{x}\exp \bigg \{\bigg (\int _{\kappa m}^{\kappa m\vee x_1}\xi _3(w)+ \int _{\kappa m\vee x_1}^{\kappa m\vee x_2}\xi _2(w)+\int _{\kappa m\vee x_2}^{y}\xi _1(w)\bigg )dw\bigg \}dy, \end{aligned}\right. \end{aligned}$$

and

$$\begin{aligned} f_{1i}(y)=\left\{ \begin{array}{l} \displaystyle \kappa \bigg [\frac{1}{g_{1i}(y,y)}+\xi _1(\kappa y)\bigg ], ~ \text {if} \quad x_2<\kappa m,\\ \displaystyle \kappa \bigg [\frac{1}{g_{1i}(y,y)}+\xi _2(\kappa y)\bigg ], ~\text {if} \quad x_1\le \kappa m\le x_2,\\ \displaystyle \kappa \bigg [\frac{1}{g_{1i}(y,y)}+\xi _3(\kappa y)\bigg ], ~\text {if} \quad \kappa m< x_1. \end{array}\right. \end{aligned}$$

The functions \(g_3(x,m)\) and \(f_3(y)\) are given by

$$\begin{aligned} g_3(x,m)=\displaystyle \int _{\kappa m}^{x}\exp \bigg \{\int _{\kappa m}^{y}\xi _1(w)dw\bigg \}dy, ~~~~~f_3(y)=\displaystyle \kappa \bigg [\frac{1}{g_{3}(y,y)}+\xi _1(\kappa y)\bigg ]. \end{aligned}$$

Appendix B Proof of Lemma 3.1

Define the process \(H=\{H(t)\}_{t\ge 0}\) by \(H(t)=e^{-\delta \hat{X}(t)}\), in which \(\hat{X}(t)=\hat{X}^u(t)\). In the expression of H(t), \(\delta \) is a positive constant to be chosen later in the proof. By applying Itô’s formula to H(t), we obtain

$$\begin{aligned} dH(t)&=-\delta e^{-\delta \hat{X}(t)}d\hat{X}(t)+\displaystyle \frac{1}{2}\delta ^2 e^{-\delta \hat{X}(t)}d<\hat{X},\hat{X}>_t\\&=\delta e^{-\delta \hat{X}(t)}\bigg ({\mathcal {K}}(t)dt-(\alpha \pi _1(t)\sigma _1 +\beta \pi _2(t)\sigma _2\rho )dB^{\mathbb {Q}}_1(t)\\&\quad -\beta \pi _2(t)\sigma _2 \sqrt{1-\rho ^2}dB_2^{\mathbb {Q}}(t)-[\alpha q(t)+\beta (1-q(t))]\sigma _3dB^{\mathbb {Q}}_3(t)\bigg ), \end{aligned}$$

in which

$$\begin{aligned} {\mathcal {K}}(t)=\alpha (\eta -\theta )\mu _3-r\hat{X}^{u}(t)+{\mathcal {M}}(t)+{\mathcal {N}}(t), \end{aligned}$$

with

$$\begin{aligned} {\mathcal {M}}(t)&=-\alpha \pi _1(t)(\mu _1-r)-\beta \pi _2(t)(\mu _2-r)-(\alpha q(t)\\&\quad +\beta (1-q(t))) \eta \mu _3-(\alpha \pi _1(t)\sigma _1\\&\quad +\beta \pi _2(t)\sigma _2\rho )\phi _1(t)\\&\quad -\beta \pi _2(t)\sigma _2\sqrt{1-\rho ^2}\phi _2(t)-(\alpha q(t)+\beta (1-q(t)))\sigma _3\phi _3(t), \end{aligned}$$

and

$$\begin{aligned} {\mathcal {N}}(t)= & {} \displaystyle \frac{\delta }{2}\bigg [(\alpha \pi _1(t) \sigma _1+\beta \pi _2(t)\sigma _2\rho )^2+\beta ^2\pi _2(t)^2\sigma _2^2 (1-\rho ^2)\\&+[\alpha q(t)+\beta (1-q(t))]^2\sigma _3^2\bigg ]. \end{aligned}$$

We wish to show that, for \(\delta \) large enough, \({\mathcal {K}}(t)\ge \frac{\alpha (\eta -\theta )\mu _3-rb}{2}>0\) for all \(0\le t\le \tau ^u_{\kappa b}\) with probability 1. First, notice, for \(x\le b\), we have \(\alpha (\eta -\theta ) \mu _3-rx\ge \alpha (\eta -\theta )\mu _3-rb\). Next, find \(\delta \) such that

$$\begin{aligned} {\mathcal {M}}(t)+{\mathcal {N}}(t)\ge -\frac{\alpha (\eta -\theta )\mu _3-rb}{2}, \end{aligned}$$

or equivalently,

$$\begin{aligned} \frac{\delta }{2}\ge \displaystyle \frac{-{\mathcal {M}}(t) -\frac{\alpha (\eta -\theta )\mu _3-rb}{2}}{[\alpha \pi _1(t) \sigma _1+\beta \pi _2(t)\sigma _2\rho ]^2+\beta ^2\pi _2(t)^2 \sigma _2^2(1-\rho ^2)+[\alpha q(t)+\beta (1-q(t))]^2\sigma _3^2}, \end{aligned}$$
(B.1)

for all \(u\in {\mathcal {D}}\). Note that, for \(-{\mathcal {M}}(t)-\frac{\alpha (\eta -\theta )\mu _3-rb}{2}\le 0\), we can simply set \(\delta =0\) and the inequality (B.1) holds. For \(-{\mathcal {M}}(t)-\frac{\alpha (\eta -\theta )\mu _3-rb}{2}>0\), by condition (2.8), we deduce that

$$\begin{aligned}&\frac{-{\mathcal {M}}(t)-\frac{\alpha (\eta -\theta )\mu _3-rb}{2}}{(\alpha \pi _1(t)\sigma _1+\beta \pi _2(t)\sigma _2\rho )^2+\beta ^2\pi _2(t)^2\sigma _2^2(1-\rho ^2)+[\alpha q(t)+\beta (1-q(t))]^2\sigma _3^2}\\&\quad \le \frac{-{\mathcal {M}}(t)-\frac{\alpha (\eta -\theta )\mu _3-rb}{2}}{(\alpha \pi _1(t)\sigma _1+\beta \pi _2(t)\sigma _2\rho )^2+\beta ^2\pi _2(t)^2\sigma _2^2(1-\rho ^2)+(\min \{\alpha ,\beta \})^2\sigma _3^2}\\&\quad \le \frac{\alpha \pi _1(t)(\mu _1-r+\sigma _1 K_{{\mathbb {Q}}})+\beta \pi _2(t)[\mu _2-r+\sigma _2(\rho +\sqrt{1-\rho ^2}) K_{{\mathbb {Q}}}]+(\max \{\alpha ,\beta \})(\eta \mu _3+\sigma _3 K_{{\mathbb {Q}}})-\frac{\alpha (\eta -\theta )\mu _3-rb}{2}}{(\alpha \pi _1(t)\sigma _1+\beta \pi _2(t)\sigma _2\rho )^2+\beta ^2\pi _2(t)^2\sigma _2^2(1-\rho ^2)+(\min \{\alpha ,\beta \})^2\sigma _3^2}\\&\quad \le \frac{\mu _1-r+\sigma _1 K_{{\mathbb {Q}}}}{2\min \{\alpha ,\beta \}\sigma _1\sigma _3}+\frac{(\mu _2-r)-\rho [(\mu _1-r)+\sigma _1K_{{\mathbb {Q}}}]+\sigma _2(\rho +\sqrt{1-\rho ^2})K_{{\mathbb {Q}}}}{2\min \{\alpha ,\beta \}\sigma _2\sigma _3\sqrt{1-\rho ^2}}\\&\qquad +\frac{(\max \{\alpha ,\beta \})(\eta \mu _2+\sigma _2 K_{{\mathbb {Q}}})-\frac{\alpha (\eta -\theta )\mu _3-rb}{2}}{(\min \{\alpha ,\beta \})^2\sigma _3^2}=\frac{\delta _0}{2}. \end{aligned}$$

The inequality (B.1) holds for any \(\delta \ge \delta _0\); thus, set \(\delta =\delta _0>0\), and for this choice of \(\delta \), we have \({\mathcal {K}}(t)\ge \frac{\alpha (\eta -\theta )\mu _3-rb}{2}>0\) for all \(0\le t\le \tau ^u_{\kappa b}\) with probability 1.

Assume \(\hat{X}(0)=x\in (\kappa m,b)\); otherwise, \(\tau ^u_{\kappa b}=0\). Apply Itô’s formula to \(e^{-\delta \hat{X}(t)}\) to obtain

$$\begin{aligned} e^{-\delta \hat{X}(\tau ^u_{\kappa b}\wedge t)}-e^{-\delta x}&=\displaystyle \int _0^{\tau ^u_{\kappa b}\wedge t}\delta e^{-\delta \hat{X}(s)}{\mathcal {K}}(s)ds-\int _0^{\tau ^u_{\kappa b} \wedge t}\delta e^{-\delta \hat{X}(s)}(\alpha \pi _1(t)\sigma _1+ \beta \pi _2(t)\sigma _2\rho ) dB^{\mathbb {Q}}_1(t)\\&\quad +\int _0^{\tau ^u_{\kappa b}\wedge t}\delta e^{-\delta \hat{X}(s)} \beta \pi _2(t)\sigma _2\sqrt{1-\rho ^2}dB^{\mathbb {Q}}_2(t)\\&\quad -\int _0^{\tau ^u_{\kappa b}\wedge t}\delta e^{-\delta \hat{X}(s)}[\alpha q(t) +\beta (1-q(t))]\sigma _3dB^{\mathbb {Q}}_3(t). \end{aligned}$$

The integrands of the second and third integrals are bounded, so the integrals’ expectations equal zero; thus, if we take the \({\mathbb {Q}}\)-expectation of both sides, we get

$$\begin{aligned} E^{{\mathbb {Q}}}_{x,m}(e^{-\delta \hat{X}(\tau ^u_{\kappa b}\wedge t)}) -e^{-\delta x}=E^{{\mathbb {Q}}}_{x,m}\int _0^{\tau ^u_{\kappa b}\wedge t} \delta e^{-\delta \hat{X}(s)}{\mathcal {K}}(s)ds. \end{aligned}$$

Note that \(e^{-\delta b}\le e^{-\delta \hat{X}(\tau ^u_{\kappa b}\wedge t)}\le e^{-\delta \kappa m}\) for all \(t\ge 0\) with probability 1, so we have the following sequence of (in)equalities

$$\begin{aligned} e^{-\delta \kappa m}-e^{-\delta x}&\ge E^{{\mathbb {Q}}}_{x,m}(e^{-\delta \hat{X} (\tau ^u_{\kappa b}\wedge t)})-e^{-\delta x}=E^{{\mathbb {Q}}}_{x,m} \displaystyle \int _0^{\tau ^u_{\kappa b}\wedge t}\delta e^{-\delta \hat{X}(s)}{\mathcal {K}}(s)ds\\&\ge \delta e^{-\delta b}\displaystyle \frac{\alpha (\eta -\theta )\mu _3-rb}{2} E^{{\mathbb {Q}}}_{x,m}\displaystyle \int _0^{\tau ^u_{\kappa b}\wedge t}1ds\\&=\delta e^{-\delta b}\displaystyle \frac{\alpha (\eta -\theta )\mu _3-rb}{2} \bigg (E^{{\mathbb {Q}}}_{x,m}\displaystyle \int _0^{\tau ^u_{\kappa b}}1ds \cdot \mathbf {1}_{\{\tau ^u_{\kappa b}\le t\}}+E^{{\mathbb {Q}}}_{x,m} \displaystyle \int _0^{t}1ds\cdot \mathbf {1}_{\{\tau ^u_{\kappa b}>t\}}\bigg ) \\&\ge \delta e^{-\delta b}\displaystyle \frac{\alpha (\eta -\theta )\mu _3-rb}{2}t \cdot {\mathbb {Q}}_{x,m}(\tau ^u_{\kappa b}>t). \end{aligned}$$

By letting \(t\rightarrow \infty \) in the last expression, we deduce that \(\lim \limits _{t\rightarrow \infty }{\mathbb {Q}}_{x,m} (\tau ^u_{\kappa b}>t)=0\), or equivalently, \({\mathbb {Q}}_{x,m} (\tau ^u_{\kappa b}<\infty )=1\). \(\Box \)

Appendix C Proof of the verification theorem

Under the optimal measure \({\mathbb {Q}}^*\) (corresponding to \(\phi ^*\)) and an arbitrary strategy \(u=(\pi _1,\pi _2,q)\), the wealth process becomes

$$\begin{aligned} d\hat{X}^{u}(t)&=[r\hat{X}^{u}(t)+\alpha (\theta -\eta )\mu _3 +\alpha \pi _1(t)(\mu _1-r)+\beta \pi _2(t)(\mu _2-r)+(\alpha q(t)+\beta (1-q(t)))\eta \mu _3\\&\quad +(\alpha \pi _1(t)\sigma _1+\beta \pi _2(t)\sigma _2\rho )\phi ^*_1(t)\\&\quad +\beta \pi _2^*(t) \sigma _2\sqrt{1-\rho ^2}\phi ^*_2(t)+(\alpha q(t)+\beta (1-q(t)))\sigma _3\phi ^*_3(t)]dt\\&\quad +(\alpha \pi _1(t)\sigma _1+\beta \pi _2(t)\sigma _2\rho )dB^{{\mathbb {Q}}^*}_1(t)\\&\quad +\beta \pi _2(t)\sigma _2\sqrt{1-\rho ^2}dB^{{\mathbb {Q}}^*}_2(t) +[\alpha q(t)+\beta (1-q(t))]\sigma _3dB^{{\mathbb {Q}}^*}_3(t). \end{aligned}$$

Applying Itô’s formula to W(xm) and integrating from 0 to \(\tau ^u_{\kappa b}\wedge t\), we get

$$\begin{aligned}&W(\hat{X}^{u}(\tau _{\kappa b}\wedge t),M^{u}(\tau ^u_{\kappa b}\wedge t))\\&\quad =W(x,m)+\displaystyle \int _0^{\tau ^u_{\kappa b}\wedge t} {\mathcal {L}}^{\phi ^*,u}W(\hat{X}^{u}(s),M^{u}(s))ds+\frac{1}{2\varepsilon } \int _0^{\tau ^u_{\kappa b}\wedge t}||\phi ^{*}(s)||^2ds\\&\qquad +\displaystyle \int _0^{\tau ^u_{\kappa b}\wedge t}W_x(\hat{X}^{u}(s), M^{u}(s))\\&\qquad \bigg ((\alpha \pi _1(s)\sigma _1+\beta \pi _2(s)\sigma _2\rho ) dB^{{\mathbb {Q}}^*}_1(s)+\beta \pi _2(s)\sigma _2\sqrt{1-\rho ^2}dB^{{\mathbb {Q}}^*}_2(s)\\&\qquad +[\alpha q(s)+\beta (1-q(s))]\sigma _3dB^{{\mathbb {Q}}^*}_3(s)\bigg ) +\displaystyle \int _0^{\tau ^u_{\kappa b}\wedge t}W_m(\hat{X}^{u}(s),M^{u}(s))dM^{u}(s). \end{aligned}$$

Taking \({\mathbb {Q}}^*\)-expectation on both sides, the equation can be simplified as

$$\begin{aligned}&E_{x,m}^{{\mathbb {Q}}^*}[W(\hat{X}^{u}(\tau ^u_{\kappa b}\wedge t),M^{u} (\tau ^u_{\kappa b}\wedge t))]-W(x,m)\\&\quad =E_{x,m}^{{\mathbb {Q}}^*}\bigg [\displaystyle \int _0^{\tau ^u_{\kappa b} \wedge t}{\mathcal {L}}^{\phi ^*,u}W(\hat{X}^{u}(s),M^{u}(s))ds\bigg ] +\frac{1}{2\varepsilon }E_{x,m}^{{\mathbb {Q}}^*}\bigg [\int _0^{\tau ^u_{\kappa b} \wedge t}||\phi ^{*}(s)||^2 ds\bigg ]\\&\qquad +E_{x,m}^{{\mathbb {Q}}^*}\bigg [\int _0^{\tau ^u_{\kappa b}\wedge t}W_m (\hat{X}^{u}(s),M^{u}(s))dM^{u}(s)\bigg ]. \end{aligned}$$

From conditions (vi) and (vii), we have

$$\begin{aligned} {\mathcal {L}}^{\phi ^*,u}W(\hat{X}^{u}(s),M^{u}(s)) \ge \inf _{u\in {\mathcal {D}}}{\mathcal {L}}^{\phi ^*,u}W(\hat{X}^{u}(s),M^{u}(s))=0, \end{aligned}$$

and the third integral is zero almost surely because \(dM^{u}(t)\) is non-zero only when \(M^{u}(t)=X^{u}(t)\). At the same time, \(W_m(m,m)=0\) is given by condition (iii). Here, we admit the fact that \(M^{u}(t)\) is a non-decreasing process; hence, the first variation process associated with it is finite almost surely and it comes to a conclusion that the cross variation of \(M^{u}(t)\) and \(\hat{X}^{u}(t)\) is zero almost surely. Then, we obtain

$$\begin{aligned} E_{x,m}^{{\mathbb {Q}}^*}[W(\hat{X}^{u}(\tau ^u_{\kappa b}\wedge t), M^{u}(\tau ^u_{\kappa b}\wedge t))]-W(x,m)\ge \frac{1}{2\varepsilon } E_{x,m}^{{\mathbb {Q}}^*}\bigg [\int _0^{\tau ^u_{\kappa b}\wedge t}||\phi ^{*}(s)||^2ds\bigg ], \end{aligned}$$

or equivalently,

$$\begin{aligned} W(x,m)\le E_{x,m}^{{\mathbb {Q}}^*}[W(\hat{X}^{u}(\tau ^u_{\kappa b}\wedge t), M^{u}(\tau ^u_{\kappa b}\wedge t))]-\frac{1}{2\varepsilon }E_{x,m}^{{\mathbb {Q}}^*} \bigg [\int _0^{\tau ^u_{\kappa b}\wedge t}||\phi ^{*}(s)||^2ds\bigg ]. \end{aligned}$$
(C.1)

Because \(\tau ^u_{\kappa b}<\infty \) with probability 1, it follows from the boundary conditions and inequality (C.1) that

$$\begin{aligned}&W(\hat{X}^{u}({\tau _{\kappa b}}\wedge t),M^{u}({\tau ^u_{\kappa b}}\wedge t))\\&\quad =\mathbf {1}_{\{\tau ^u_{\kappa b}\le t\}}\cdot W(\hat{X}^{u}({\tau _{\kappa b}}), M^{u}({\tau ^u_{\kappa b}}))+\mathbf {1}_{\{\tau ^u_{\kappa b}> t\}}\cdot W(\hat{X}^{u}(t),M^{u}(t))\\&\quad =\mathbf {1}_{\{\tau _{\kappa }^u<\tau _b^u,\tau ^u_{\kappa b}\le t\}} +\mathbf {1}_{\{\tau ^u_{\kappa b}> t\}}\cdot W(\hat{X}^{u}(t),M^{u}(t)). \end{aligned}$$

Then, we have

$$\begin{aligned}&E_{x,m}^{{\mathbb {Q}}^*}[W(\hat{X}^{u}(\tau ^u_{\kappa b}\wedge t), M^{u}(\tau ^u_{\kappa b}\wedge t))]\\&\quad ={\mathbb {Q}}_{x,m}^*{\{\tau _{\kappa }^u <\tau _b^u,\tau ^u_{\kappa b}\le t\}}+E^{{\mathbb {Q}}^*}_{x,m}[\mathbf {1}_{\{\tau ^u_{\kappa b}> t\}} \cdot W(\hat{X}^{u}(t),M^{u}(t))]. \end{aligned}$$

Substituting the above equation into (C.1) and applying the Dominated Convergence Theorem, we obtain

$$\begin{aligned} W(x,m)\le {\mathbb {Q}}_{x,m}^*(\tau ^u_{\kappa }<\tau _b^u) -\frac{1}{2\varepsilon }E_{x,m}^{{\mathbb {Q}}^*}\bigg [\int _0^{\tau ^u_{\kappa b}}||\phi ^{*} (s)||^2ds\bigg ]. \end{aligned}$$

Hence, the inequality

$$\begin{aligned} W(x,m)\le \sup _{{\mathbb {Q}}\in {\mathcal {Q}}}\bigg \{{\mathbb {Q}}_{x,m} (\tau ^u_{\kappa }<\tau _b^u)-\frac{1}{2\varepsilon }E^{{\mathbb {Q}}}_{x,m} \bigg [\int _0^{\tau ^u_{\kappa b}}||\phi ^{*}(s)||^2ds\bigg ]\bigg \}, \end{aligned}$$

holds for any \(u\in {\mathcal {D}}\). Then

$$\begin{aligned} W(x,m)\le \inf _{u\in {\mathcal {D}}} \sup _{{\mathbb {Q}} \in {\mathcal {Q}}}\bigg \{{\mathbb {Q}}_{x,m}(\tau ^u_{\kappa }<\tau _b^u) -\frac{1}{2\varepsilon }E^{{\mathbb {Q}}}_{x,m}\bigg [\int _0^{\tau ^u_{\kappa b}}|| \phi ^{*}(s)||^2ds\bigg ]\bigg \}=V(x,m). \end{aligned}$$

Under the optimal investment and reinsurance policy \(u^*\) and an arbitrary probability measure \({\mathbb {Q}}\in {\mathcal {Q}}\), the wealth process follows

$$\begin{aligned} d\hat{X}^{u^*}(t)&=[r\hat{X}^{u^*}(t)+\alpha (\theta -\eta )\mu _3 +\alpha \pi ^*_1(t)(\mu _1-r)+\beta \pi ^*_2(t)(\mu _2-r)+(\alpha q^*(t)\\&\quad +\beta (1-q^*(t)))\eta \mu _3\\&\quad +(\alpha \pi ^*_1(t)\sigma _1+\beta \pi ^*_2(t)\sigma _2\rho )\phi _1(t) +\beta \pi _2^*(t)\sigma _2\sqrt{1-\rho ^2}\phi _2(t)+(\alpha q^*(t)\\&\quad +\beta (1-q^*(t)))\sigma _3\phi _3(t)]dt\\&\quad +(\alpha \pi ^*_1(t)\sigma _1+\beta \pi ^*_2(t)\sigma _2\rho ) dB^{{\mathbb {Q}}}_1(t)+\beta \pi _2^*(t)\sigma _2\sqrt{1-\rho ^2}dB^{{\mathbb {Q}}}_2(t) +[\alpha q^*(t)\\&\quad +\beta (1-q^*(t))]\sigma _3dB^{{\mathbb {Q}}}_3(t).\\ \end{aligned}$$

Applying Itô’s formula to W(xm) and integrating from 0 to \(\tau ^{u^*}_{\kappa b}\wedge t\), we obtain

$$\begin{aligned}&W(\hat{X}^{u^*}(\tau _{\kappa b}\wedge t),M^{u^*}(\tau ^{u^*}_{\kappa b}\wedge t))\\&\quad =W(x,m)+\displaystyle \int _0^{\tau ^{u^*}_{\kappa b}\wedge t}{\mathcal {L}}^{\phi ,u^*} W(\hat{X}^{u^*}(s),M^{u^*}(s))ds+\frac{1}{2\varepsilon }\int _0^{\tau ^{u^*}_{\kappa b} \wedge t}||\phi ^{*}(s)||^2ds\\&\qquad +\displaystyle \int _0^{\tau ^{u^*}_{\kappa b}\wedge t}W_x(\hat{X}^{u^*}(s),M^{u^*}(s))\\&\qquad \bigg ([\alpha \pi ^*_1(s)\sigma _1+\beta \pi ^*_2(s)\sigma _2\rho ] dB^{{\mathbb {Q}}}_1(s) +\beta \pi ^*_2(s)\sigma _2\sqrt{1-\rho ^2}dB^{{\mathbb {Q}}}_2(s)\\&\qquad +[\alpha q^*(s)+\beta (1-q^*(s))]\sigma _3dB^{{\mathbb {Q}}}_3(s)\bigg ) +\displaystyle \int _0^{\tau ^{u^*}_{\kappa b}\wedge t}W_m(\hat{X}^{u^*}(s),M^{u^*}(s))dM^{u^*}(s). \end{aligned}$$

Taking \({\mathbb {Q}}\)-expectation on both sides, the equation can be simplified as

$$\begin{aligned}&E_{x,m}^{{\mathbb {Q}}}[W(\hat{X}^{u^*}(\tau ^{u^*}_{\kappa b}),M^{u^*} (\tau ^{u^*}_{\kappa b}))]-W(x,m)\\&\quad =E_{x,m}^{{\mathbb {Q}}}\bigg [\displaystyle \int _0^{\tau ^{u^*}_{\kappa b} \wedge t}{\mathcal {L}}^{\phi ,u^*}W(\hat{X}^{u^*}(s),M^{u^*}(s))ds\bigg ] +\frac{1}{2\varepsilon }E_{x,m}^{{\mathbb {Q}}}\bigg [\int _0^{\tau ^{u^*}_{\kappa b} \wedge t}||\phi ^{*}(s)||^2ds\bigg ]\\&\qquad +E_{x,m}^{{\mathbb {Q}}}\bigg [\int _0^{\tau ^{u^*}_{\kappa b}\wedge t} W_m(\hat{X}^{u^*}(s),M^{u^*}(s))dM^{u^*}(s)\bigg ]. \end{aligned}$$

From conditions (vi) and (vii), we have

$$\begin{aligned} {\mathcal {L}}^{\phi ,u^*}W(\hat{X}^{u^*}(s),M^{u^*}(s)) \le \sup _{{\mathbb {Q}}\in {\mathcal {Q}}}{\mathcal {L}}^{\phi ,u^*} W(\hat{X}^{u^*}(s),M^{u^*}(s))=0. \end{aligned}$$

Again, it follows that

$$\begin{aligned} E_{x,m}^{{\mathbb {Q}}}[W(\hat{X}^{u^*}(\tau ^{u^*}_{\kappa b}\wedge t), M^{u^*}(\tau ^{u^*}_{\kappa b}\wedge t))]-W(x,m)\le \frac{1}{2\varepsilon } E_{x,m}^{{\mathbb {Q}}}\bigg [\int _0^{\tau ^{u^*}_{\kappa b}\wedge t}||\phi ^{*}(s)||^2ds\bigg ], \end{aligned}$$

or equivalently,

$$\begin{aligned} W(x,m)\ge E_{x,m}^{{\mathbb {Q}}}[W(\hat{X}^{u^*}(\tau ^{u^*}_{\kappa b}\wedge t), M^{u^*}(\tau _{\kappa b}\wedge t))]-\frac{1}{2\varepsilon }E_{x,m}^{{\mathbb {Q}}} \bigg [\int _0^{\tau ^{u^*}_{\kappa b}\wedge t}||\phi ^{*}(s)||^2ds\bigg ]. \end{aligned}$$

Passing \(t\rightarrow \infty \), we have

$$\begin{aligned} W(x,m)\ge {\mathbb {Q}}_{x,m}(\tau ^{u^*}_{\kappa }<\tau _{b}^{u^*}) -\frac{1}{2\varepsilon }E_{x,m}^{{\mathbb {Q}}}\bigg [\int _0^{\tau ^{u^*}_{\kappa b}}|| \phi ^{*}(s)||^2ds\bigg ]. \end{aligned}$$

The inequality holds for all \({\mathbb {Q}}\in {\mathcal {Q}}\). So

$$\begin{aligned} \displaystyle W(x,m)&\ge \sup \limits _{{\mathbb {Q}}\in {\mathcal {Q}}} \bigg \{ {\mathbb {Q}}_{x,m}(\tau ^{u^*}_{\kappa }<\tau _{b}^{u^*}) -\displaystyle \frac{1}{2\varepsilon }E_{x,m}^{{\mathbb {Q}}} \bigg [\int _0^{\tau ^{u^*}_{\kappa b}}||\phi ^{*}(s)||^2ds\bigg ]\bigg \}\\&=\inf \limits _{u\in {\mathcal {D}}}\sup \limits _{{\mathbb {Q}}\in {\mathcal {Q}}} \bigg \{ {\mathbb {Q}}_{x,m}(\tau ^{u}_{\kappa }<\tau _{b}^{u}) -\displaystyle \frac{1}{2\varepsilon }E_{x,m}^{{\mathbb {Q}}} \bigg [\int _0^{\tau ^{u}_{\kappa b}}||\phi ^{*}(s)||^2ds\bigg ]\bigg \}=V(x,m). \end{aligned}$$

From the above discussion, it yields that \(W(x,m)=V(x,m)\), which completes the proof of verification theorem. \(\square \)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Liang, Z. & Han, X. Minimizing the penalized probability of drawdown for a general insurance company under ambiguity aversion. Math Meth Oper Res 96, 259–290 (2022). https://doi.org/10.1007/s00186-022-00794-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-022-00794-w

Keywords

Navigation