Skip to main content
Log in

Bahadur representations for the bootstrap median absolute deviation and the application to projection depth weighted mean

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

Median absolute deviation (hereafter MAD) is known as a robust alternative to the ordinary variance. It has been widely utilized to induce robust statistical inferential procedures. In this paper, we investigate the strong and weak Bahadur representations of its bootstrap counterpart. As a useful application, we utilize the results to derive the weak Bahadur representation of the bootstrap sample projection depth weighted mean—a quite important location estimator depending on MAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bahadur R (1966) A note on quantiles in large samples. Ann Stat 37:577–580

    Article  MathSciNet  Google Scholar 

  • Donoho DL (1982) Breakdown properties of multivariate location estimators. Statistics, Harvard University, Ph.D. Qualifying Paper. Dept

  • Dutta S, Ghosh AK (2012) On robust classification using projection depth. Ann Inst Stat Math 64(3):657–676

    Article  MathSciNet  Google Scholar 

  • Falk M (1997) On MAD and comedians. Ann Inst Stat Math 49(4):615–644

    Article  MathSciNet  Google Scholar 

  • He X, Shao Q (1996) A general Bahadur representation of \(M\)-estimators and its application to linear regression with nonstochastic designs. Ann Stat 24:2608–2630

    Article  MathSciNet  Google Scholar 

  • Kiefer J (1967) On Bahadur’s representation of sample quantiles. Ann Math Stat 38(5):1323–1342

    Article  MathSciNet  Google Scholar 

  • Liu RY (1992) Data depth and multivariate rank tests. In: Dodge Y (ed) L1-Statistical analysis and related methods. North-Holland, Amsterdam, pp 279–294

  • Mazumder S, Serfling R (2009) Bahadur representations for the median absolute deviation and its modifications. Statist Probab Lett 79:1774–1783

    Article  MathSciNet  Google Scholar 

  • Small G (1990) A survey of multidimensional medians. Int Stat Rev 58:263–277

    Article  Google Scholar 

  • Serfling RJ (1980) Approximation theorems of mathematical statistics, vol 162. Wiley

  • Serfling R, Mazumder S (2009) Exponential probability inequality and convergence results for the median absolute deviation and its modifications. Statist Probab Lett 79:1767–1773

    Article  MathSciNet  Google Scholar 

  • Stahel WA (1981) Breakdown of covariance estimators. Res Rep 31. Fachgruppe für Statistik. ETH, Zürich

  • Wang D, Chen S (2009) Empirical likelihood for estimating equations with missing values. Ann Stat 37:490–517

    Article  MathSciNet  CAS  Google Scholar 

  • Wendler M (2011) Bahadur representation for U-quantiles of dependent data. J Multivar Anal 102(6):1064–1079

    Article  MathSciNet  Google Scholar 

  • Wu WB (2005) On the Bahadur representation of sample quantiles for dependent sequences. Ann Stat 33:1934–1963

    Article  MathSciNet  Google Scholar 

  • Zuo YJ (2003) Projection based depth functions and associated medians. Ann Stat 31:1460–1490

    Article  MathSciNet  Google Scholar 

  • Zuo YJ (2006) Multidimensional Trimming Based on Projection Depth. Ann Stat 34:2211–2251

    Article  MathSciNet  Google Scholar 

  • Zuo YJ (2010) Is the \(t\) confidence interval \(X\pm t_\alpha (n - 1)s / \sqrt{n}\) optimal? Am Stat 64:170–173

    Article  Google Scholar 

  • Zuo Y (2015) Bahadur representations for bootstrap quantiles. Metrika 78(5):597–610

    Article  MathSciNet  Google Scholar 

  • Zuo YJ, Cui HJ, He XM (2004) On the Stahel-Donoho estimators and depth-weighted means for multivariate data. Ann Stat 32:189–218

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank one anonymous referee and the editors for their valuable comments, which have led to many improvements in this paper. Qing Liu’s research was supported by the Key Research Base Project of Humanities and Social Sciences in Jiangxi Province Universities (Grant No. JD20021), the NSF project of Jiangxi provincial education department (Grant No. GJJ190261), the China Postdoctoral Science Foundation funded project (Grant No. 2020M671961), and Postdoctoral Program of Jiangxi Province (Grant No. 2019KY47). Xiaohui Liu’s research is supported by the NSF of China (Grant No. 11971208), the National Social Science Foundation of China (Grant No. 21 &ZD152), and the Outstanding Youth Fund Project of the Science and Technology Department of Jiangxi Province (Grant No. 20224ACB211003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proofs of the lemmas

Appendix: Proofs of the lemmas

In this appendix, we provide the detailed proofs for all lemmas given above.

Proof of Lemma 1

By Hoeffding’s inequality in Serfling (1980), we have

$$\begin{aligned}{} & {} \textsf{P}^{*}\left( \hat{v}^{*}_{n,l}> v+\frac{\epsilon }{2}\right) \\{} & {} \quad = \textsf{P}^{*}\left( nF^{*}_{n}\left( v+\frac{\epsilon }{2}\right) \le \left\lfloor \frac{n+l}{2}\right\rfloor -1\right) \\{} & {} \quad = \textsf{P}^{*}\left( \sum _{i=1}^{n} I\left( X^{*}_{i}>v+\frac{\epsilon }{2}\right) \ge n - \left( \left\lfloor \frac{n+l}{2}\right\rfloor -1\right) \right) \\{} & {} \quad = \textsf{P}^{*}\left( \sum _{i=1}^{n}I\left( X^{*}_{i}>v+\frac{\epsilon }{2}\right) - \sum _{i=1}^{n} \left( 1 - F_{n}\left( v+\frac{\epsilon }{2}\right) \right) \right. \\{} & {} \quad \left. \ge nF_{n} \left( v+\frac{\epsilon }{2}\right) - \left( \left\lfloor \frac{n+l}{2}\right\rfloor -1\right) \right) \\{} & {} \quad \le \exp \left\{ -2n\left( F_{n}(v+\frac{\epsilon }{2}) - \frac{\left\lfloor \frac{n+l}{2}\right\rfloor -1}{n}\right) ^{2}\right\} . \end{aligned}$$

By the Glivenko–Cantelli theorem, \(F_{n}(v+\frac{\epsilon }{2})\rightarrow F(v+\frac{\epsilon }{2}), a.s.\) Thus for sufficiently large n,

$$\begin{aligned} F_{n}\left( v+\frac{\epsilon }{2}\right) -\frac{\left\lfloor \frac{n+l}{2}\right\rfloor -1}{n} ~> ~\left( F\left( v+\frac{\epsilon }{2}\right) -\frac{\left\lfloor \frac{n+l}{2}\right\rfloor -1}{n}\right) \Big /\root 4 \of {2} ~ > ~0, \quad a.s. \end{aligned}$$

by noting that \(F(v+\frac{\epsilon }{2})>\frac{1}{2}\) for any \(\epsilon >0\). Hence

$$\begin{aligned} \textsf{P}\left( \hat{v}^{*}_{n,l}> v+\frac{\epsilon }{2}\right) = \textsf{E}\,\left[ \textsf{P}^{*}\left( \hat{v}^{*}_{n,l} > v+\frac{\epsilon }{2}\right) \right] \le e^{-\sqrt{2}n a_{0}^2(\epsilon ,l)}. \end{aligned}$$

Similar discussion leads to

$$\begin{aligned} \textsf{P}\left( \hat{v}^{*}_{n,l}< v-\frac{\epsilon }{2}\right) = \textsf{E}\,\left[ \textsf{P}^{*}\left( \hat{v}^{*}_{n,l} < v - \frac{\epsilon }{2}\right) \right] \le e^{-\sqrt{2}n b_{0}^2(\epsilon ,l)}. \end{aligned}$$

Then the conclusion follows. \(\square \)

Proof of Lemma 2

Denote by \(G^{*}_{n}(y)\) the empirical distribution function of \(W^{*}_{1,l},W^{*}_{2,l},\ldots , W^{*}_{n,l}\). Set \(\alpha _{n}=(\left\lfloor \frac{n+m}{2}\right\rfloor -1)/n\), then we have

$$\begin{aligned}{} & {} \textsf{P}^{*}\left( \hat{\xi }^{*}_{n,m,l}>\xi +\epsilon \right) = \textsf{P}^{*}\left( W^{*}_{\left\lfloor \frac{n+m}{2}\right\rfloor l:n}>\xi +\epsilon \right) \\{} & {} \quad = \textsf{P}^{*}\left( G^{*}_{n}(\xi +\epsilon )\le \alpha _{n}\right) \\{} & {} \quad \le \textsf{P}^{*}\left( G^{*}_{n}(\xi +\epsilon )\le \alpha _{n},~ |\hat{v}^{*}_{n,l} - v|\le \frac{\epsilon }{2}\right) + \textsf{P}^{*}\left( |\hat{v}^{*}_{n,l}-v|>\frac{\epsilon }{2}\right) \\{} & {} \quad \le \textsf{P}^{*}\left( \sum _{i=1}^nI\left( v-\xi -\frac{\epsilon }{2} \le X_i^* \le v+\xi +\frac{\epsilon }{2}\right) \le n \alpha _{n} \right) \\{} & {} \quad + \textsf{P}^{*}\left( |\hat{v}^{*}_{n,l}-v|>\frac{\epsilon }{2}\right) , \end{aligned}$$

where the last inequality follows from

$$\begin{aligned}{} & {} \left\{ \sum _{i=1}^nI(\hat{v}^{*}_{n,l}-\xi -\epsilon \le X_i^*\le \hat{v}^{*}_{n,l}+\xi +\epsilon )\le n\alpha _n,~v-\frac{\epsilon }{2}\le \hat{v}^{*}_{n,l}\le v+\frac{\epsilon }{2}\right\} \\{} & {} \subset \left\{ \sum _{i=1}^nI\left( v-\xi -\frac{\epsilon }{2} \le X_i^* \le v+\xi +\frac{\epsilon }{2}\right) \le n \alpha _{n},~v-\frac{\epsilon }{2}\le \hat{v}^{*}_{n,l}\le v+\frac{\epsilon }{2}\right\} . \end{aligned}$$

For the first part, by Hoeffding’s inequality, we have

$$\begin{aligned}{} & {} { \textsf{P}^{*}\left( \sum _{i=1}^nI\left( v-\xi -\frac{\epsilon }{2} \le X_i^*\le v+\xi +\frac{\epsilon }{2}\right) \le n\alpha _{n}\right) }\\{} & {} \quad = \textsf{P}^{*}\left( \sum _{i=1}^{n}I\left( v-\xi -\frac{\epsilon }{2} \le X_i^*\le v+\xi +\frac{\epsilon }{2}\right) - np_{n} \le n(\alpha _{n}-p_{n1})\right) \\{} & {} \quad = \textsf{P}^{*}\left( \sum _{i=1}^{n}(Y_{i}- \textsf{E}\,^* Y_{i})\ge n(p_{n1}-\alpha _{n})\right) \\{} & {} \quad \le \exp \{-2n(p_{n1}-\alpha _{n})^{2}\}, \end{aligned}$$

where \(Y_{i}=1-I\left( v-\xi -\frac{\epsilon }{2} \le X^{*}_{i}\le v+\xi +\frac{\epsilon }{2}\right) \), \(i=1,\ldots ,n\) and \(p_{n1}=F_{n}\left( v+\xi +\frac{\epsilon }{2}\right) -F_{n}\left( v-\xi -\frac{\epsilon }{2}-\right) \). Note that \(G(\xi +\frac{\epsilon }{2})=F\left( v+\xi +\frac{\epsilon }{2}\right) -F\left( v-\xi -\frac{\epsilon }{2}-\right) \), the Glivenko–Cantelli theorem implies that

$$\begin{aligned} p_{n1}\rightarrow F\left( v+\xi +\frac{\epsilon }{2}\right) -F\left( v-\xi -\frac{\epsilon }{2}-\right) > \frac{1}{2}, \quad a.s. \end{aligned}$$

Then for sufficiently large n

$$\begin{aligned} p_{n1}-\alpha _n>\frac{F(v+\xi +\frac{\epsilon }{2}) -F(v-\xi -\frac{\epsilon }{2})-(\left\lfloor \frac{n+m}{2}\right\rfloor -1)/n}{\root 4 \of {2}}>0,\quad a.s. \end{aligned}$$

It follows from the discussion above and Lemma 1 that

$$\begin{aligned} \textsf{P}\left( \hat{\xi }^{*}_{n,m,l}>\xi +\epsilon \right)= & {} \textsf{E}\,\left[ \textsf{P}^{*}\left( \hat{\xi }^{*}_{n,m,l}>\xi +\epsilon \right) \right] \\\le & {} 2e^{-\sqrt{2}n\delta ^{2}_{\epsilon ,n}} + \textsf{E}\,\left[ e^{-2n(p_{n}-\alpha _{n})^{2}}\right] \\\le & {} 2e^{-\sqrt{2}n\delta ^{2}_{\epsilon ,n}} + e^{-\sqrt{2}nc_{0}^2(\epsilon ,m)}\\\le & {} 3e^{-\sqrt{2}n\Delta ^{2}_{\epsilon ,n}}. \end{aligned}$$

Set \(\beta _{n}=\left\lfloor \frac{n+m}{2}\right\rfloor /n\), a similar argument leads to

$$\begin{aligned} \textsf{P}^{*}(\hat{\xi }^{*}_{n,m,l} < \xi - \epsilon )\le & {} \textsf{P}^{*}\left( \sum _{i=1}^nI\left( v-\xi +\frac{\epsilon }{2} \le X_i^*\le v+\xi -\frac{\epsilon }{2}\right) \ge n\beta _{n}\right) \\{} & {} + \textsf{P}^{*}\left( |\hat{v}^{*}_{n,l}-v|>\frac{\epsilon }{2} \right) \\\le & {} \exp \{-2n(\beta _{n}-p_{n2})^{2}\}+2e^{-\sqrt{2}n\delta ^{2}_{\epsilon ,n}}, \end{aligned}$$

where \(p_{n2}=F_{n}(v+\xi -\frac{\epsilon }{2}) -F_{n}(v-\xi +\frac{\epsilon }{2}-)\), and \(\beta _{n}-p_{n2}>0\) for sufficiently large n. Then we have

$$\begin{aligned} \textsf{P}(\hat{\xi }^{*}_{n,m,l}< \xi -\epsilon ) = \textsf{E}\,\left[ \textsf{P}^{*}(\hat{\xi }^{*}_{n,m,l} < \xi -\epsilon )\right] \le 3e^{-\sqrt{2}n\Delta ^{2}_{\epsilon ,n}}. \end{aligned}$$

The conclusion has been proved. \(\square \)

Proof of Lemma 3

Put \(\epsilon _n=D \frac{(\log n)^{1/2}}{n^{1/2}}\). It follows from Lemmas 1 and 2 that, for any fixed \(l \ge 1\) and \(m \ge 1\),

$$\begin{aligned} \textsf{P}(|(\hat{v}^{*}_{n,l} + \hat{\xi }^{*}_{n,m,l})-(v+\xi )| > \epsilon _n) \le 8\exp \{-\sqrt{2}n\Delta ^2_{\epsilon _n/2, n}\}. \end{aligned}$$

Since \(F(v)=1/2\), we have

$$\begin{aligned} a_0\left( \frac{\epsilon _n}{2}, l\right)= & {} F\left( v+\frac{\epsilon _n}{4}\right) -\frac{\left\lfloor \frac{n+l}{2}\right\rfloor -1}{n}\\= & {} F\left( v+\frac{\epsilon _n}{4}\right) - \frac{1}{2}+O\left( \frac{1}{n}\right) \\= & {} F\left( v+\frac{\epsilon _n}{4}\right) - F(v)+O\left( \frac{1}{n}\right) \\= & {} \frac{F'(v)}{4} \epsilon _n +o\left( \epsilon _n\right) +O\left( \frac{1}{n}\right) \\> & {} \frac{(\log n)^{1/2}}{n^{1/2}}, \quad \text {for sufficiently large } n. \end{aligned}$$

Similarly

$$\begin{aligned} b_0\left( \frac{\epsilon _n}{2}, l\right) > \frac{(\log n)^{1/2}}{n^{1/2}}, \quad \text {for sufficiently large } n. \end{aligned}$$

By similar arguments using \(F(v+\xi )-F(v-\xi )=1/2\), we also obtain

$$\begin{aligned} c_0\left( \frac{\epsilon _n}{2}, m\right) > \frac{(\log n)^{1/2}}{n^{1/2}}, \quad \text {for sufficiently large } n \end{aligned}$$

and

$$\begin{aligned} d_0\left( \frac{\epsilon _n}{2}, m\right) > \frac{(\log n)^{1/2}}{n^{1/2}}, \quad \text {for sufficiently large }n. \end{aligned}$$

The conclusion follows from the inequalities above and the Borel-Cantelli lemma. \(\square \)

Proof of Lemma 4

Denote by \(\theta _p\) the p-th quantile of F for \(p\in (0, 1)\). Let \(a_n =\frac{c\log n}{n^{1/2}}\) for some positive constant c, and define

$$\begin{aligned} H_{pn}(x):=[F^*_n(x)-F^*_n(\theta _p)]- [F(x)-F(\theta _p)]. \end{aligned}$$

It follows from Lemma 3.7 of Zuo (2015) that

$$\begin{aligned} \sup _{|x-\theta _p|<a_n}|H_{pn}(x)|=O\left( n^{-3/4}\log n\right) , \text {as}\, n\rightarrow \infty , \quad a.s. \end{aligned}$$

Let we express \(v-\xi \) as the p-th quantile of F: \(v-\xi =F^{-1}(p)=\theta _p\), and put \(x_n=\hat{v}^{*}_{n,l} - \hat{\xi }^{*}_{n,m,l}\) for any fixed \(l,m \ge 1\), then Lemma 3 implies

$$\begin{aligned} |x_n-\theta _p| \le D \frac{(\log n)^{1/2}}{n^{1/2}} < a_n, \,\text {for sufficiently large }n. \end{aligned}$$

Now we have

$$\begin{aligned} H_{n1} \le \sup _{|x-\theta _p|<a_n}|H_{pn}(x)|=O\left( n^{-3/4}\log n\right) , \quad a.s. \end{aligned}$$

Similarly, we can obtain

$$\begin{aligned} H_{n2} =O\left( n^{-3/4}\log n\right) , \quad a.s. \end{aligned}$$

The proof has been completed. \(\square \)

Proof of Lemma 5

For convenience, we set \(l=m=1\). Recall that \(G^{*}_{n}(y)\) is the empirical distribution function of \(W^{*}_{1,l},W^{*}_{2,l},\ldots , W^{*}_{n,l}\). Since \(\hat{\xi }^{*}_{n,1,1} = W^{*}_{\left\lfloor \frac{n+1}{2}\right\rfloor :n, 1}\), we have \(G_{n}^{*}(\hat{\xi }^{*}_{n,1,1})=\left\lfloor \frac{n+1}{2}\right\rfloor /n\) unless there is a tie. If such a tie exists, we have some \(X_{i}^{*}=\hat{v}^{*}_{n,1} \pm \hat{\xi }^{*}_{n,1,1}\). It follows from Zuo (2015) that for large n

$$\begin{aligned} \sum _{i=1}^{n}I\left( X_{i}^{*} = \hat{v}^{*}_{n,1}\pm \hat{\xi }^{*}_{n,1,1} \right) < 2\log n, \quad a.s. \end{aligned}$$

That is, we have for large n

$$\begin{aligned} nG_{n}^{*}(\hat{\xi }^{*}_{n,1,1})\le \left\lfloor \frac{n+1}{2}\right\rfloor + 2\log n,\quad a.s. \end{aligned}$$

Then almost surely

$$\begin{aligned} G_{n}^{*}(\hat{\xi }^{*}_{n,1,1})=\frac{1}{2}+ O\left( \frac{\log n}{n} \right) , \quad n\rightarrow \infty . \end{aligned}$$

This completes the proof of this lemma. \(\square \)

Proof of Lemma 6

For any \(\epsilon >0\), let \(M > \sqrt{\log (1/\epsilon )}/\root 4 \of {2}\). Put \(\epsilon _n= D\frac{M}{n^{1/2}}\), where the constant D is defined in Lemma 3. It can be seen from Lemmas 1–2 that

$$\begin{aligned} \textsf{P}(|(\hat{v}^{*}_{n,l}+\hat{\xi }^{*}_{n,m,l})-(v+\xi )|>\epsilon _n)\le 8\exp \{-\sqrt{2} n\Delta ^2_{\epsilon _n/2, n}\}. \end{aligned}$$

Similar to Lemma 3, we have

$$\begin{aligned} a_0\left( \frac{\epsilon _n}{2}, l\right)= & {} F\left( v+\frac{\epsilon _n}{4}\right) -\frac{\left\lfloor \frac{n+l}{2}\right\rfloor -1}{n}\\= & {} F\left( v+\frac{\epsilon _n}{4}\right) - F(v)+O\left( \frac{1}{n}\right) \\= & {} \frac{F'(v)}{4} \epsilon _n +o(\epsilon _n)+O\left( \frac{1}{n}\right) \\> & {} \frac{M}{n^{1/2}}, \quad \text {for all sufficiently large } n. \end{aligned}$$

The same results hold for \(b_0(\frac{\epsilon _n}{2}, l),c_0(\frac{\epsilon _n}{2}, m)\) and \(d_0(\frac{\epsilon _n}{2},m)\). Now we have

$$\begin{aligned} \sqrt{2} n\Delta ^2_{\epsilon _n/2, n} \ge \sqrt{2} M^2\quad \text {for all sufficiently large } n, \end{aligned}$$

whence for n large enough

$$\begin{aligned} \textsf{P}(n^{1/2}|(\hat{v}^{*}_{n, l}+\hat{\xi }^{*}_{n,m,l})-(v+\xi )|>DM) \le e^{-\sqrt{2} M^2}<\epsilon , \end{aligned}$$

which implies

$$\begin{aligned} |(\hat{v}^{*}_{n, l}+\hat{\xi }^{*}_{n, m,l})-(v+\xi )|=O_p(n^{-1/2}). \end{aligned}$$

The rest parts can be proved by using the same steps. \(\square \)

Proof of Lemma 7

Let

$$\begin{aligned} U_n= & {} n^{1/2}[F_n^*(\hat{v}^{*}_{n,l}+\hat{\xi }^{*}_{n,m,l})-F_n^*(v+\xi )]\\ V_n= & {} n^{1/2}[F(\hat{v}^{*}_{n, l}+\hat{\xi }^{*}_{n,m,l})-F(v+\xi )]. \end{aligned}$$

By Taylor expansion and Lemma 6,

$$\begin{aligned} F(\hat{v}^{*}_{n, l}+\hat{\xi }^{*}_{n, m,l})-F(v+\xi )=O(|\hat{v}^{*}_{n, l}+\hat{\xi }^{*}_{n, m,l}-v-\xi |)=O_p(n^{-1/2}),\, n\rightarrow \infty . \end{aligned}$$

Thus \(V_n\) satisfies (a) of Lemma 13 of Serfling and Mazumder (2009).

Consider the case \(t>0\). Define the right limit as

$$\begin{aligned} \beta :=\lim _{t\rightarrow 0^+}F^{-1}(F(v+\xi )+t/\sqrt{n}). \end{aligned}$$

Since \(F^{-1}\) maybe not continuous at \(F(v+\xi )\), there are two cases to consider. When \(\beta =v+\xi \), using \(F(x) < p\) if and only if \(x<F^{-1}(p)\), we have

$$\begin{aligned} \begin{aligned} \{V_n\le t\} =&\left\{ F(\hat{v}^{*}_{n, l}+\hat{\xi }^{*}_{n, m,l})-F(v+\xi )\le \frac{t}{\sqrt{n}}\right\} \\ \subset&\left\{ F(\hat{v}^{*}_{n, l}+\hat{\xi }^{*}_{n, m,l})<F(v+\xi )+ \frac{t+\epsilon /2}{\sqrt{n}}\right\} \\ =&\left\{ \hat{v}^{*}_{n, l}+\hat{\xi }^{*}_{n, m,l} < F^{-1}\left( F(v+\xi )+\frac{t+\epsilon /2}{\sqrt{n}}\right) \right\} \\ \subset&\left\{ F_n^*(\hat{v}^{*}_{n, l}+\hat{\xi }^{*}_{n, m,l})\le F_n^*(\eta _n(t))\right\} \end{aligned} \end{aligned}$$
(21)

where

$$\begin{aligned} \eta _n(t)=F^{-1}\left( F(v+\xi )+\frac{t+\epsilon /2}{\sqrt{n}}\right) . \end{aligned}$$

By (21) and the expressions of \(U_n\) and \(V_n\), we have

$$\begin{aligned} \textsf{P}(U_n\ge t+\epsilon , V_n \le t)\le \textsf{P}\left( F_n^*(\eta _n(t))-F_n^*(v+\xi )\ge \frac{t+\epsilon }{\sqrt{n}}\right) . \end{aligned}$$
(22)

Since F is continuous at \(v+\xi \), which implies that \(F(\eta _n(t))-F(v+\xi )=\frac{t+\epsilon /2}{\sqrt{n}} >0\). Then for all n sufficiently large

$$\begin{aligned} p_n:=F_n(\eta _n(t))-F_n(v+\xi )>0,\quad a.s. \end{aligned}$$

Then for a sufficiently large n, given \(X_1,X_2,\ldots ,X_n\), we have

$$\begin{aligned} Z_n^*=:n\left( F_n^*(\eta _n(t))-F_n^*(v+\xi )\right) \sim \text {Binomial}(n, p_n). \end{aligned}$$

By using the Chebyshev inequality, and noting that \(E(p_n)=\frac{t+\epsilon /2}{\sqrt{n}}\), we have

$$\begin{aligned}{} & {} \textsf{P}\left( F_n^*(\eta _n(t))-F_n^*(v+\xi )\ge \frac{t+\epsilon }{\sqrt{n}}\right) \\{} & {} = \textsf{E}\,\left[ \textsf{P}^*\left( F_n^*(\eta _n(t))-F_n^*(v+\xi )\ge \frac{t+\epsilon }{\sqrt{n}}\right) \right] \\{} & {} = \textsf{E}\,\left[ \textsf{P}^*\left( Z_n^*-np_n\ge \sqrt{n}(t+\epsilon )-np_n\right) \right] \\{} & {} \le \textsf{E}\,\left[ \textsf{P}^*\left( |Z_n^*-np_n|\ge \frac{\epsilon }{3}\sqrt{n}\right) \right] \\{} & {} \le \textsf{E}\,\left[ \frac{9p_n(1-p_n)}{\epsilon ^2}\right] \le \frac{9(t+\epsilon /2)}{\sqrt{n} \epsilon ^2}\rightarrow 0,\quad n\rightarrow \infty . \end{aligned}$$

Returning to (22), the first condition in (b) of Lemma 13 in Mazumder and Serfling (2009) is established for \(t>0\) and \(\beta =v+\xi \).

When \(t>0\) and \(\beta >v+\xi \), let \(\theta \) be any point in the open interval \((v+\xi , \beta )\). As has been proved in Sect. 2 that \(\hat{v}^{*}_{n, l}+\hat{\xi }^{*}_{n, m,l}\rightarrow v+\xi ,\, a.s.\) which implies \( \textsf{P}(\hat{v}^{*}_{n, l}+\hat{\xi }^{*}_{n, m,l}>\theta )\rightarrow 0\) and

$$\begin{aligned} \textsf{P}(U_n\ge t+\epsilon , V_n\le t)= \textsf{P}(U_n\ge t+\epsilon , V_n\le t, \hat{v}^{*}_{n, l}+\hat{\xi }^{*}_{n, m,l}\le \theta )+o(1), n\rightarrow \infty . \end{aligned}$$

Since \(\eta _n(t)\rightarrow \beta >\theta \), then for sufficiently large n

$$\begin{aligned}{} & {} \{V_n\le t, \hat{v}^{*}_{n, l}+\hat{\xi }^{*}_{n, m,l}\le \theta \}\\{} & {} \quad \subset \left\{ F(\hat{v}^{*}_{n, l}+\hat{\xi }^{*}_{n, m,l})<F(v+\xi )+ \frac{t+\epsilon /2}{\sqrt{n}},~ \hat{v}^{*}_{n, l}+\hat{\xi }^{*}_{n, m,l}\le \theta \right\} \\{} & {} \quad \subset \left\{ \hat{v}^{*}_{n, l}+\hat{\xi }^{*}_{n, m,l}<F^{-1}\left( F(v+\xi )+\frac{t+\epsilon /2}{\sqrt{n}}\right) , ~ \hat{v}^{*}_{n,l}+\hat{\xi }^{*}_{n, m,l}\le \theta \right\} \\{} & {} \quad \subset \{F_n^*(\hat{v}^{*}_{n,l}+\hat{\xi }^{*}_{n, m,l})\le F_n^*(\theta )\}. \end{aligned}$$

Then similar to (22), we have

$$\begin{aligned} \textsf{P}(U_n\ge t+\epsilon , V_n\le t, \hat{v}^{*}_{n,l}+\hat{\xi }^{*}_{n, m,l}\le \theta ) \le \textsf{P}\left( F_n^*(\theta )-F_n^*(v+\xi )\ge \frac{t+\epsilon }{\sqrt{n}}\right) .\nonumber \\ \end{aligned}$$
(23)

Note that by the definition of \(\beta \) and \(\theta \), almost surely there are no sample in the interval \([v+\xi , \theta ]\), hence no bootstrap sample in the same interval. So \(F_n^*(\theta )-F_n^*(v+\xi )=0,\, a.s.\) Hence

$$\begin{aligned} \textsf{P}\left( F_n^*(\theta )-F_n^*(v+\xi )\ge \frac{t+\epsilon }{\sqrt{n}}\right) =0. \end{aligned}$$

Thus we establish the first condition in (b) of Lemma 13 in Mazumder and Serfling (2009) for \(t>0\). The case \(t\le 0\) and the second condition of (b) can be proved similarly. That is, we obtain \(H_{2n}=o_p(n^{-1/2})\).

The proof of \(H_{1n}=o_p(n^{-1/2})\) follows a similar fashion. We omit the details. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Liu, X. & Hu, Z. Bahadur representations for the bootstrap median absolute deviation and the application to projection depth weighted mean. Metrika (2024). https://doi.org/10.1007/s00184-024-00958-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00184-024-00958-0

Keywords

Mathematics Subject Classification

Navigation