Skip to main content
Log in

Robust nonparametric equivariant regression for functional data with responses missing at random

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

The paper deal with the robust equivariant nonparametric regression when the covariates are functional and the response variables are missing at random (MAR). Under some mild conditions, the almost complete convergence rate of the proposed estimators for both cases known and unknown scale parameter are established. Some simulations study are drawing, and real data analysis are given to illustrate the higher predictive performances of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Let \((Z_n)_{n\in \mathbb {N}}\) be a sequence of real r.v’s. We say that \(Z_n\) converges almost completely (a.co.) toward zero if, and only if, \(\forall \varepsilon> 0,\sum ^{\infty }_{n=1}\mathbb {P}(|Z_n|>\varepsilon ) <\infty \). Moreover, we say that the rate of the almost complete convergence of \(Z_n\) to zero is of order \(u_n\) (with \(u_n\rightarrow 0)\) and we write \(Z_n =O(u_n)~~a.co.\) if, and only if, \(\exists \varepsilon >0\) such that \(\sum ^{\infty }_{n=1}\mathbb {P}(|Z_n|>\varepsilon u_n) <\infty \). This kind of convergence implies both almost sure convergence and convergence in probability.

References

  • Almanjahie I, Attoch M, Fetitah O, Louhab H (2020) Robust kernel regression estimator of the scale parameter for functional ergodic data with applications. Chil J Stat 11:73–93

    MathSciNet  Google Scholar 

  • Attouch M, Laksaci A, Ould Saïd E (2009) Asymptotic distribution of robust estimator for functional nonparametric models. Commun Stat Theory Methods 38:1317–1335

    Article  MathSciNet  MATH  Google Scholar 

  • Attouch M, Laksaci A, Ould Saïd E (2013) Strong uniform convergence rate of robust estimator of the regression function for functional and dependent processes. J Jpn Stat Soc 42:125–143

    Article  Google Scholar 

  • Boente G, Fraiman R (1989) Robust nonparametric regression estimation. J Multivar Anal 29:180–198

    Article  MathSciNet  MATH  Google Scholar 

  • Boente G, Rodriguez D (2006) Robust estimators of high order derivatives of regression functions. Stat Probab Lett 76:1335–1344

    Article  MathSciNet  MATH  Google Scholar 

  • Boente G, Vahnovan A (2015) Strong convergence of robust equivariant nonparametric functional regression estimators. Stat Probab Lett 11:1–11

    Article  MathSciNet  MATH  Google Scholar 

  • Boger Z (2003) Selection of quasi-optimal inputs in chemometrics modeling by artificial neural network analysis. Anal Chim Acta 490:31–40

    Article  Google Scholar 

  • Bosq D (2012) Linear processes in function spaces: theory and applications, vol 149. Springer, Berlin

    MATH  Google Scholar 

  • Cai T, Hall P et al (2006) Prediction in functional linear regression. Ann Stat 34:2159–2179

    Article  MathSciNet  MATH  Google Scholar 

  • Chaouch M, Khardani S (2015) Randomly censored quantile regression estimation using functional stationary ergodic data. J Nonparametr Stat 27:65–87

    Article  MathSciNet  MATH  Google Scholar 

  • Collomb G, Härdle W (1986) Strong uniform convergence rates in robust nonparametric time series analysis and prediction: Kernel regression estimation from dependent observations. Stoch Process Their Appl 23:77–89

    Article  MathSciNet  MATH  Google Scholar 

  • Esteban-Dıéz I, González-Sáiz JM, Pizarro C (2004) OWAVEC: a combination of wavelet analysis and an orthogonalization algorithm as a pre-processing step in multivariate calibration. Anal Chim Acta 515:31–41

    Article  Google Scholar 

  • Feng F, Wu Q, Zeng L (2015) Rapid analysis of diesel fuel properties by near infrared reflectance spectra. Spectrochim Acta Part A Mol Biomol Spectrosc 149:271–278

    Article  Google Scholar 

  • Ferraty F, Sued M, Vieu P (2013) Mean estimation with data missing at random for functional covariables. Statistics 47:688–706

    Article  MathSciNet  MATH  Google Scholar 

  • Ferraty F, Vieu P (2006) Nonparametric functional data analysis: theory and practice. In: Springer series in statistics. Springer, New York

  • Gheriballah A, Laksaci A, Sekkal S (2013) Nonparametric m-regression for functional ergodic data. Stat Probab Lett 83:902–908

    Article  MathSciNet  MATH  Google Scholar 

  • Härdle W (1984) Robust regression function estimation. J Multivar Anal 14:169–180

    Article  MathSciNet  MATH  Google Scholar 

  • Härdle W, Gasser T (1984) Robust nonparametric function fitting. J Roy Stat Soc: Ser B (Methodol) 46:42–51

    MathSciNet  MATH  Google Scholar 

  • Hardle W, Tsybakov A-B et al (1988) Robust nonparametric regression with simultaneous scale curve estimation. Ann Stat 16:120–135

    Article  MathSciNet  MATH  Google Scholar 

  • Huber P-J (1965) A robust version of the probability ratio test. Ann Math Stat 36:1753–1758

    Article  MathSciNet  MATH  Google Scholar 

  • Huber P-J (1992) Robust estimation of a location parameter. In: Breakthroughs in statistics. Springer, pp 492–518

  • Maronna R-A, Martin D, Yohai VJ (2006) Robust statistics. In: Wiley series in probability and statistics, vol 2. Wiley, p 3

  • Mebsout M, Attouch M, Fetitah O (2020) Nonparametric m-regression with scale parameter for functional dependent data. Appl Appl Math 15:846–874

    MathSciNet  MATH  Google Scholar 

  • Pîrjan A, Oprea S-V, Cărutasu G, Petrosanu D-M, Bâra A, Coculescu C (2017) Devising hourly forecasting solutions regarding electricity consumption in the case of commercial center type consumers. Energies 10:17–27

    Article  Google Scholar 

  • Ramsay J-O, Silverman B-W (2005) Principal components analysis for functional data. In: Functional data analysis. Springer, pp 147–172

  • Tsybakov A-B (1982) Robust estimates of a function. Problemy Peredachi Informatsii 18:39–52

    MathSciNet  MATH  Google Scholar 

  • Yao F, Müller H-G, Wang J-L (2005) Functional data analysis for sparse longitudinal data. J Am Stat Assoc 100:577–590

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor in Chef and anonymous reviewers for their valuable comments and suggestions which improved substantially the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Kadi Attouch.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proofs of Theorem 2.1

For the proofs of the theorem 2.1, we use the fact that \(\rho \) is a strictly convex function and continuously differentiable w.r.t. the second component, then \(\psi \) is strictly monotone and continuous w.r.t. the second component. We give the proofs for the case of an increasing \(\psi (Y-.)\), decreasing case being obtained by considering \(-\psi (Y-.)\). Therefore, we can write, under this consideration, for all \(\kappa > 0\)

$$\begin{aligned} \Psi \left( x,\theta _{x}-\kappa \right) \le \Psi \left( x,\theta _{x}\right) =0\le \Psi \left( x,\theta _{x}+\kappa \right) , \end{aligned}$$

and

$$\begin{aligned} \widehat{\Psi }\left( x,\widehat{\theta }_{x}-\kappa \right) \le \widehat{\Psi }\left( x,\widehat{\theta }_{x}\right) =0\le \widehat{\Psi }\left( x,\widehat{\theta }_{x}+\kappa \right) . \end{aligned}$$

Hence, for all \(\kappa > 0\), we have

$$\begin{aligned} \mathbb {P}\left( \left| \widehat{\theta }_{x}-\theta _{x}\right| \ge \kappa \right)\le & {} \mathbb {P}\left( \left| \widehat{\Psi }\left( x,\theta _{x}+\kappa \right) -\Psi \left( x,\theta _{x}+\kappa \right) \right| \ge \Psi \left( x,\theta _{x}+\kappa \right) \right) \\{} & {} +\mathbb {P}\left( \left| \widehat{\Psi }\left( x,\theta _{x}-\kappa \right) -\Psi \left( x,\theta _{x}-\kappa \right) \right| \ge -\Psi \left( x,\theta _{x}-\kappa \right) \right) . \end{aligned}$$

So, it suffices to show that

$$\begin{aligned} \widehat{\Psi }(x,t)-\Psi (x,t)\rightarrow 0\quad \text {a.co. for}\quad t:=\theta _{x}\pm \kappa . \end{aligned}$$
(19)

Moreover, under ((H4) (i)), we get that

$$\begin{aligned} \widehat{\theta }_{x}-\theta _{x}=\frac{\Psi \left( x,\widehat{\theta _{x}}\right) -\widehat{\Psi }\left( x,\widehat{\theta }_{x}\right) }{\Psi ^{\prime }\left( x,\xi _{n}\right) }, \end{aligned}$$

where \(\xi _n\) is between \(\widehat{\theta }_{x}\) and \(\theta _{x}\). As long as we could be able to check that

$$\begin{aligned} \exists \tau >0,\quad \sum _{n=1}^{\infty }\mathbb {P}\left( \Psi ^{\prime }\left( x,\xi _{n}\right)<\tau \right) <\infty , \end{aligned}$$
(20)

we would have

$$\begin{aligned} \left| \widehat{\theta _{x}}-\theta _{x}\right| = O_{a.co.}\left( \sup _{t\in \left[ \theta _{x}-\kappa ,\theta _{x}+\kappa \right] }\left| \Psi (x,t)-\widehat{\Psi }(x,t)\right| \right) . \end{aligned}$$

Therefore, all that is left to do is to study the convergence rate of

$$\begin{aligned} \sup _{t\in \left[ \theta _{x}-\kappa ,\theta _{x}+\kappa \right] }\left| \Psi (x,t)-\widehat{\Psi }(x,t)\right| . \end{aligned}$$

To do that, we consider the following decomposition

$$\begin{aligned} \widehat{\Psi }(x,t)-\Psi (x,t)= & {} \frac{1}{\widehat{\Psi }_{D}(x)}\left\{ \left( \widehat{\Psi }_{N}(x,t)-\mathbb {E}\left[ \widehat{\Psi }_{N}(x,t)\right] \right) \right. \nonumber \\{} & {} -\left. \left( \mathbb {E}\left[ \widehat{\Psi }_{D}(x)\right] \Psi (x,t)-\mathbb {E}\left[ \widehat{\Psi }_{N}(x,t)\right] \right) \right\} \nonumber \\{} & {} +\frac{\Psi (x,t)}{\widehat{\Psi }_{D}(x)}\left( \mathbb {E}\left[ \widehat{\Psi }_{D}(x)\right] -\widehat{\Psi }_{D}(x)\right) . \end{aligned}$$
(21)

Therefore, Theorem 2.1’s result is a consequence of the following intermediate results, where their proofs are postponed to the appendix.

Lemma 4.1

Under hypotheses (H1)–(H4 iv), we obtain

$$\begin{aligned} |\widehat{\Psi }_{D}(x)-\mathbb {E}\left[ \widehat{\Psi }_{D}(x)\right] |=O_{a.co.}\left( \sqrt{\frac{\log n}{n\varphi _{x}(h)}}\right) , \end{aligned}$$
(22)

and

$$\begin{aligned} \lim _{n\rightarrow \infty }\widehat{\Psi }_{D}(x)=\lim _{n\rightarrow \infty }\mathbb {E}\left[ \widehat{\Psi }_{D}(x)\right] =p(x),\quad a.co. \end{aligned}$$
(23)

Corollary 4.1

Under hypotheses of Lemma 4.1, we obtain:

$$\begin{aligned} \text {there exists}\,\eta > 0,\quad \text {such that}\,\sum _{n=1}^{\infty }\mathbb {P}\left( \left| \widehat{\Psi }_{D}(x)\right|<\eta \right) <\infty . \end{aligned}$$
(24)

Lemma 4.2

Under hypotheses (H3) and (H4), we have

$$\begin{aligned} \sup _{t\in \left[ \theta _{x}-\kappa ,\theta _{x}+\kappa \right] }\left| \mathbb {E}\left[ \widehat{\Psi }_{D}(x)\right] \Psi (x,t)-\mathbb {E}\left[ \widehat{\Psi }_N(x,t)\right] \right| =O\left( h^{b}\right) . \end{aligned}$$
(25)

Lemma 4.3

Under hypotheses (H1)(H5), we have

$$\begin{aligned} \sup _{t\in \left[ \theta _{x}-\kappa ,\theta _{x}+\kappa \right] }\left| \widehat{\Psi }_N(x,t)-\mathbb {E}\left[ \widehat{\Psi }_N(x,t)\right] \right| =O_{a.co.}\left( \sqrt{\frac{\log n}{n\varphi _{x}(h)}}\right) . \end{aligned}$$
(26)

Lemma 4.4

Under the hypotheses of Theorem 2.1, \(\widehat{\theta }_x\) exists and is unique a.co. for all sufficiently large n and there exists \(\tau >0\) such that

$$\begin{aligned} \sum _{n\ge 1}\mathbb {P}\left\{ \Psi ^{\prime }\left( x,\xi _{n}\right)<\tau \right\} <\infty . \end{aligned}$$

1.2 Proofs of Proposition 2.1

Similarly to (21), we have

$$\begin{aligned} \widehat{F}(y|X=x)-F(y|X=x)= & {} \frac{1}{\widehat{\Psi }_{D}(x)}\left\{ \left( \widehat{R}_{N}(x,y)-\mathbb {E}\left[ \widehat{R}_{N}(x,y)\right] \right) \right. \\{} & {} -\left. \left( \mathbb {E}\left[ \widehat{\Psi }_{D}(x)\right] F(y|X=x)-\mathbb {E}\left[ \widehat{R}_{N}(x,y)\right] \right) \right\} \\{} & {} +\frac{F(y|X=x)}{\widehat{\Psi }_{D}(x)}\left( \mathbb {E}\left[ \widehat{\Psi }_{D}(x)\right] -\widehat{\Psi }_{D}(x)\right) . \end{aligned}$$

Then, Proposition 2.1 can be deduced from the following intermediate results, together with Lemma 4.1 and Corollary 4.1.

Lemma 4.5

Under hypotheses (E3) and (E4), we have

$$\begin{aligned} \sup _{y\in \left[ \vartheta _{x}-\kappa ,\vartheta _{x}+\kappa \right] }\left| \mathbb {E} \left[ \widehat{\Psi }_{D}(x)\right] F(y|X=x)-\mathbb {E}\left[ \widehat{R}_N(x,y)\right] \right| =O\left( h^{b_1}\right) . \end{aligned}$$
(27)

Lemma 4.6

Under hypotheses (E1)(E4), we have

$$\begin{aligned} \sup _{y\in \left[ \vartheta _{x}-\kappa ,\vartheta _{x}+\kappa \right] }\left| \widehat{R}_N(x,y)-\mathbb {E} \left[ \widehat{R}_N(x,y)\right] \right| =O_{a.co.}\left( \sqrt{\frac{\log n}{n\varphi _{x}(h)}}\right) . \end{aligned}$$
(28)

1.3 Proofs of Theorem 2.2

Assumption (E5 (i)) leads to

$$\begin{aligned} \widehat{\vartheta }_{x}-\vartheta _{x}=\frac{\Gamma \left( x,\widehat{\vartheta _{x}},\widehat{s}(x)\right) -\widehat{\Gamma }\left( x,\widehat{\vartheta }_{x},\widehat{s}(x)\right) }{\Gamma ^{\prime }\left( x,\xi _{n},\widehat{s}(x)\right) }, \end{aligned}$$

where \(\xi _n\) is between \(\widehat{\vartheta }_{x}\) and \(\vartheta _{x}\). Assumption (E5 (i)) and Lemma 2.1 imply that

$$\begin{aligned} \exists \tau >0,\quad \sum _{n=1}^{\infty }\mathbb {P}\left( \Gamma ^{\prime }\left( x,\xi _{n},\widehat{s}(x)\right)<\tau \right) <\infty , \end{aligned}$$
(29)

we would have

$$\begin{aligned} \left| \widehat{\vartheta _{x}}-\vartheta _{x}\right| = O_{a.co.}\left( \sup _{y\in \left[ \vartheta _{x}-\kappa ,\vartheta _{x}+\kappa \right] } \sup _{A\le \sigma \le B} \left| \Gamma (x,y,\sigma )-\widehat{\Gamma }(x,y,\sigma )\right| \right) . \end{aligned}$$

This result is based on the same kind of decomposition as (21). Indeed, we can write:

$$\begin{aligned} \widehat{\Gamma }(x,y,\sigma )-\Gamma (x,y,\sigma )= & {} \frac{1}{\widehat{\Psi }_{D}(x)}\left\{ \left( \widehat{\Gamma }_{N}(x,y,\sigma ) -\mathbb {E}\left[ \widehat{\Gamma }_{N}(x,y,\sigma )\right] \right) \right. \nonumber \\{} & {} -\left. \left( \mathbb {E}\left[ \widehat{\Psi }_{D}(x)\right] \Gamma (x,y,\sigma )-\mathbb {E}\left[ \widehat{\Gamma }_{N}(x,y,\sigma )\right] \right) \right\} \nonumber \\{} & {} +\frac{\Gamma (x,y,\sigma )}{\widehat{\Psi }_{D}(x)}\left( \mathbb {E}\left[ \widehat{\Psi }_{D}(x)\right] -\widehat{\Psi }_{D}(x)\right) . \end{aligned}$$
(30)

Finally, the proof of Theorem 2.2 is achieved via the following lemmas, together with Lemma 4.1 and Corollary 4.1.

Lemma 4.7

Under hypotheses (E3) and (E5), we have

$$\begin{aligned} \sup _{y\in \left[ \vartheta _{x}-\kappa ,\vartheta _{x}+\kappa \right] }\sup _{A\le \sigma \le B} \left| \mathbb {E}\left[ \widehat{\Psi }_{D}(x)\right] \Gamma (x,y,\sigma )-\mathbb {E}\left[ \widehat{\Gamma }_N(x,y,\sigma )\right] \right| =O\left( h^{b_1}\right) .\nonumber \\ \end{aligned}$$
(31)

Lemma 4.8

Under hypotheses (E1)(E3) and (E5)(E6), we have

$$\begin{aligned} \sup _{y\in \left[ \vartheta _{x}-\kappa ,\vartheta _{x}+\kappa \right] }\sup _{A\le \sigma \le B} \left| \widehat{\Gamma }_N(x,y,\sigma )-\mathbb {E}\left[ \widehat{\Gamma }_N(x,y,\sigma )\right] \right| =O_{a.co.}\left( \sqrt{\frac{\log n}{n\varphi _{x}(h)}}\right) .\nonumber \\ \end{aligned}$$
(32)

Lemma 4.9

Under the hypotheses of Theorem 2.2, \(\widehat{\vartheta }_x\) exists and is unique a.co. for all sufficiently large n.

1.4 Proofs of Lemmas

Proof of Lemma 4.1

First, we have:

$$\begin{aligned} \widehat{\Psi }_{D}(x)-\mathbb {E}\left[ \widehat{\Psi }_{D}(x)\right] =\frac{1}{n}\sum _{i=1}^{n} \left( \frac{\delta _iK_{i}(x)}{\mathbb {E}(K_{1}(x))}- \frac{\mathbb {E}(\delta _iK_{i}(x))}{\mathbb {E}(K_{1}(x))}\right) =\frac{1}{n}\sum _{i=1}^{n}\left( \tilde{\Delta }_{i}-\mathbb {E}(\tilde{\Delta }_{i})\right) , \end{aligned}$$

where \(\tilde{\Delta }_{i}=\displaystyle \frac{\delta _iK_{i}(x)}{\mathbb {E}(K_{1}(x))}\). Because of (H1) and (H3), we can write

$$\begin{aligned} C\varphi _{x}\left( h\right)<\mathbb {E}(K_{1}(x))<C^{\prime }\varphi _{x}\left( h\right) . \end{aligned}$$

So, we can get directly that

$$\begin{aligned} \left| \tilde{\Delta }_{i}\right|<C/\varphi _{x}\left( h\right) \quad \text { and }\quad \mathbb {E}\left| \tilde{\Delta }_{i}\right| ^{2}<C^{\prime }/\varphi _{x}\left( h\right) . \end{aligned}$$

Thus, the use of the classical Bernstein’s inequality allows us to write for all \(\eta >0\):

$$\begin{aligned} \mathbb {P}\left( \left| \widehat{\Psi }_{D}(x)-\mathbb {E}\left[ \widehat{\Psi }_{D}(x)\right] \right| >\eta \sqrt{\frac{\log n}{n\varphi _{x}\left( h\right) }}\right) \le C^{\prime }n^{-C\eta ^{2}}. \end{aligned}$$

For the proof of (23), we only need to establish

$$\begin{aligned} \mathbb {E}\left[ \widehat{\Psi }_{D}(x)\right] \rightarrow p(x),\quad a.co. \text { as } n\rightarrow \infty . \end{aligned}$$
(33)

By the properties of conditional expectation and the mechanism of MAR and (H4 iv), it follows that

$$\begin{aligned} \mathbb {E}\left[ \widehat{\Psi }_{D}(x)\right]= & {} \frac{1}{nE\left( K_{1}(x)\right) }\sum _{i=1}^{n}\mathbb {E}\left( \delta _{i}K_{i}(x)\right) =\frac{1}{nE\left( K_{1}(x)\right) }\sum _{i=1}^{n}\mathbb {E}\left( \mathbb {E}\left[ \delta _{i}|X_i\right] K_{i}(x)\right) \\= & {} \frac{1}{nE\left( K_{1}(x)\right) }[p(x)+o(1)]\sum _{i=1}^{n}\mathbb {E}\left( K_{i}(x)\right) \rightarrow p(x), ~~a.co. \text { as } n\rightarrow \infty . \end{aligned}$$

Therefore, (23) follows from (22) and (33). \(\square \)

Proof of Corollary 4.1

It is easy to remark that: \(\displaystyle \left| \widehat{\Psi }_{D}(x)\right| \le \frac{p(x)}{2}\) implies that \(\displaystyle p(x)-\widehat{\Psi }_{D}(x) \ge \frac{p(x)}{2}\), which implies that

$$\begin{aligned} \displaystyle \left| \widehat{\Psi }_{D}(x)-p(x)\right| \ge \frac{p(x)}{2}. \end{aligned}$$

We deduce, from Lemma 4.1, that

$$\begin{aligned} \mathbb {P}\left( \left| \widehat{\Psi }_{D}(x)\right| \le \frac{p(x)}{2}\right) \le \mathbb {P}\left( \left| \widehat{\Psi }_{D}(x)-p(x)\right| >\frac{p(x)}{2}\right) . \end{aligned}$$

Consequently

$$\begin{aligned} \sum _{n=1}^{\infty }\mathbb {P}\left( \left| \widehat{\Psi }_{D}(x)\right|<\frac{p(x)}{2}\right) <\infty . \end{aligned}$$

\(\square \)

Proof of Lemma 4.2

Since \((X_1,Y_1,\delta _1),\ldots ,(X_n,Y_n,\delta _n)\) are independents identically distributed, we have:

$$\begin{aligned}{} & {} \forall t\in \left[ \theta _{x}-\kappa ,\theta _{x}+\kappa \right] \left| \mathbb {E}\left[ \widehat{\Psi }_{D}(x)\right] \Psi (x,t)-\mathbb {E}\left[ \widehat{\Psi }_N(x,t)\right] \right| \\{} & {} \quad = \frac{\left| \mathbb {E}\left[ \delta _1K_1(x)\psi (Y_1-t)-\delta _1K_1(x)\Psi (x,t)\right] \right| }{\mathbb {E}(K_1(x))} \\{} & {} \quad = \frac{\left| \mathbb {E}\left( \mathbbm {1}_{B(x,h)}(X_1)K_1(x)p(X_1)\left[ \mathbb {E}(\psi (Y_1-t)|X=X_1)-\Psi (x,t)\right] \right) \right| }{\mathbb {E}(K_1(x))}\\{} & {} \quad = \frac{\left| \mathbb {E}\left( \mathbbm {1}_{B(x,h)}(X_1)K_1(x)p(X_1)\left[ \Psi (X_1,t)-\Psi (x,t)\right] \right) \right| }{\mathbb {E}(K_1(x))}. \end{aligned}$$

Then, by the Hölder hypothesis (H4 (ii)), (H3) and the continuity of p(x), we get that:

$$\begin{aligned}{} & {} \forall t\in \left[ \theta _{x}-\kappa ,\theta _{x}+\kappa \right] \left| \mathbb {E}\left[ \widehat{\Psi }_{D}(x)\right] \Psi (x,t)-\mathbb {E}\left[ \widehat{\Psi }_N(x,t)\right] \right| \\{} & {} \quad \le Ch^b[p(x)+o(1)]\frac{\left| \mathbb {E}\left( K_1(x)\right) \right| }{\mathbb {E}(K_1(x))}=O(h^b). \end{aligned}$$

\(\square \)

Proof of Lemma 4.3

Using the compactness of \(\left[ \theta _{x}-\kappa ,\theta _{x}+\kappa \right] \), we can write that \(\left[ \theta _{x}-\kappa ,\theta _{x}+\kappa \right] \subset \bigcup _{k=1}^{s_{n}}S_{k}\) where \(S_{k}=\left( y_{k}-l_{n},y_{k}+l_{n}\right) \).

We consider the intervals extremities gride

$$\begin{aligned} \mathcal {H}_n=\left\{ y_{j}-l_{n},y_{j}+l_{n},1\le j \le s_n\right\} . \end{aligned}$$

Then the monotony of \(\mathbb {E}\left[ \widehat{\Psi }_N(x,t)\right] \) and \(\widehat{\Psi }_N(x,t)\) gives, for \(1 \le j \le s_n\)

$$\begin{aligned} \mathbb {E}\left[ \widehat{\Psi }_{N}\left( x,y_{j}-l_{n}\right) \right]\le & {} \sup _{t\in \left( y_{j}-l_{n},y_{j}+l_{n}\right) }\mathbb {E}\left[ \widehat{\Psi }_{N}(x,t)\right] \le \mathbb {E}\left[ \widehat{\Psi }_{N}\left( x,y_{j}+l_{n}\right) \right] \nonumber \\ \widehat{\Psi }_{N}\left( x,y_{j}-l_{n}\right)\le & {} \sup _{t\in \left( y_{j}-l_{n},y_{j}+l_{n}\right) }\widehat{\Psi }_{N}(x,t)\le \widehat{\Psi }_{N}\left( x,y_{j}+l_{n}\right) . \end{aligned}$$
(34)

Now, from (H4 (ii)) we have, for any \(t_1,t_2\in \left[ \theta _{x}-\kappa ,\theta _{x}+\kappa \right] \)

$$\begin{aligned} \left| \mathbb {E}\left[ \widehat{\Psi }_{N}\left( x,t_1\right) \right] -\mathbb {E}\left[ \widehat{\Psi }_{N}\left( x,t_2\right) \right] \right| \le C\left| t_1-t_2\right| ^{b'}. \end{aligned}$$
(35)

So, we deduce from (34) and (35) that

$$\begin{aligned}{} & {} \sup _{t\in \left[ \theta _{x}-\kappa ,\theta _{x}+\kappa \right] }\left| \mathbb {E}\left[ \widehat{\Psi }_{N}\left( x,t\right) \right] -\widehat{\Psi }_{N}\left( x,t\right) \right| \nonumber \\{} & {} \qquad \le \max _{1\le j\le s_{n}}\max _{z\in \left\{ y_{j}-l_{n},y_{j}+l_{n}\right\} }\left| \widehat{\Psi }_{N}(x,z)-\mathbb {E}\left[ \widehat{\Psi }_{N}(x,z)\right] \right| +2Cl_{n}^{b'}. \end{aligned}$$
(36)

Take now \(l_n=n^{-\alpha /b'}\) for some \(\alpha >b'/2\), and note that because of \(\lim _{n\rightarrow \infty }l_n=0\) and (H2), we have

$$\begin{aligned} \sup _{t\in \left[ \theta _{x}-\kappa ,\theta _{x}+\kappa \right] }\left| \mathbb {E}\left[ \widehat{\Psi }_{N}\left( x,t\right) \right] -\widehat{\Psi }_{N}\left( x,t\right) \right|\le & {} \max _{z\in \mathcal {H}_n}\left| \widehat{\Psi }_{N}(x,z)-\mathbb {E}\left[ \widehat{\Psi }_{N}(x,z)\right] \right| \nonumber \\{} & {} +O\left( \sqrt{\frac{\log n}{n\varphi _{x}\left( h\right) }}\right) . \end{aligned}$$
(37)

The proof of this part is based on the exponential inequality given in Corollary A.8.ii in Ferraty and Vieu (2006), with

$$\begin{aligned} \displaystyle Z_{i}=\frac{1}{\mathbb {E}(K_1(x))}\left[ \delta _iK_i(x)\psi \left( Y_i-z\right) - \mathbb {E}\left( \delta _iK_i(x)\psi \left( Y_i-z\right) \right) \right] . \end{aligned}$$

To do that, we have to show that:

$$\begin{aligned} \exists C>0, \forall m\ge 2,\quad \mathbb {E}(|Z^m_{1}|)=C\varphi ^{-m+1}_x(h). \end{aligned}$$
(38)

First, we prove for \(m\ge 2\) that:

$$\begin{aligned} \frac{1}{\mathbb {E}^m(K_1(x))}\mathbb {E}\left[ \left| \delta _1K_1(x)\psi \left( Y_1-z\right) \right| ^m\right] = O(\varphi ^{-m+1}_x(h)). \end{aligned}$$
(39)

Then, using (H3) and (H5) we write:

$$\begin{aligned} \mathbb {E}\left[ \left| \delta _1K^m_1(x)\psi \left( Y_1-z\right) ^m\right| \right]\le & {} \mathbb {E}\left[ \mathbb {E}\left( \left| \psi \left( Y_1-z\right) \right| ^m|X_1\right) K^m_1(x)\right] \\\le & {} C\mathbb {E}(K^m_1(x))\\\le & {} C\varphi _x(h). \end{aligned}$$

Which implies that

$$\begin{aligned} \frac{1}{\mathbb {E}^m(K_1(x))}\mathbb {E}\left[ \left| \delta _1\psi \left( Y_1-z\right) ^mK^m_1(x)\right| \right] = O(\varphi ^{-m+1}_x(h)), \end{aligned}$$

and

$$\begin{aligned} \frac{1}{\mathbb {E}(K_1(x))}\mathbb {E}\left[ \left| \delta _1\psi \left( Y_1-z\right) K_1(x)\right| \right] \le C. \end{aligned}$$

Next, by the Newton’s binomial expansion we obtain:

$$\begin{aligned} \mathbb {E}(|Z^m_{1}|)\le & {} C\sum ^m_{k=0} \frac{\mathbb {E}\left[ \left| \delta _1\psi \left( Y_1-z\right) ^kK^k_1(x)\right| \right] }{\mathbb {E}^k(K_1(x))} \left[ \frac{\mathbb {E}\left[ \left| \delta _1\psi \left( Y_1-z\right) K_1(x)\right| \right] }{\mathbb {E}(K_1(x))}\right] ^{m-k} \\\le & {} C\max _{k=0,\ldots ,m} \varphi ^{-k+1}_x(h)\\\le & {} C\varphi ^{-m+1}_x(h). \end{aligned}$$

It follows that:

$$\begin{aligned} \mathbb {E}(|Z^m_{1}|)=O(\varphi ^{-m+1}_x(h)). \end{aligned}$$
(40)

Now apply the exponential inequality given by Corollary A.8.ii in Ferraty and Vieu (2006) for \(Z_i\). Since \(\mathbb {E}[|Z_{i}|^m] = O(\varphi _x(h)^{-m+1})\), then, we can take \(a^2=\frac{1}{\varphi _x(h)}\). Hence, for all \(\eta _0> 0\):

$$\begin{aligned} \mathbb {P}\left( \left| \widehat{\Psi }_N(x,z)-\mathbb {E}\left( \widehat{\Psi }_N(x,z)\right) \right|>\eta \sqrt{\frac{\log n}{n\varphi _{x}\left( h\right) }}\right)= & {} \mathbb {P}\left( \frac{1}{n}\left| \sum ^n_{i=1}Z_{i}\right| >\eta \sqrt{\frac{\log n}{n\varphi _{x}\left( h\right) }}\right) \\\le & {} 2\exp \left( -C\eta ^2\log n\right) . \end{aligned}$$

Then, we have for any \(\eta > 0\)

$$\begin{aligned}{} & {} \mathbb {P}\left( \max _{z\in \mathcal {H}_n}\left| \widehat{\Psi }_N(x,z)-\mathbb {E}\left( \widehat{\Psi }_N(x,z)\right) \right|>\eta \sqrt{\frac{\log n}{n\varphi _{x}\left( h\right) }}\right) \\{} & {} \qquad \le s_n\max _{z\in \mathcal {H}_n}\mathbb {P}\left( \left| \widehat{\Psi }_N(x,z)-\mathbb {E}\left( \widehat{\Psi }_N(x,z)\right) \right| >\eta \sqrt{\frac{\log n}{n\varphi _{x}\left( h\right) }}\right) \\{} & {} \qquad \le Cs_n n^{-C\eta ^2}\\{} & {} \qquad \le \frac{C}{l_n}n^{-C\eta ^2}. \end{aligned}$$

Thus, by choosing \(\eta \) such that \(C\eta ^2=1/2+2\alpha /b'\), we obtain

$$\begin{aligned} s_n\max _{z\in \mathcal {H}_n} \mathbb {P}\left( \left| \widehat{\Psi }_N(x,z)-\mathbb {E}\left( \widehat{\Psi }_N(x,z)\right) \right| > \eta \sqrt{\frac{\log n}{n\varphi _{x}\left( h\right) }}\right) \le n^{-1/2-2\alpha /b'}. \end{aligned}$$

Now, we can conclude

$$\begin{aligned} \sup _{t\in \left[ \theta _{x}-\kappa ,\theta _{x}+\kappa \right] }\left| \widehat{\Psi }_N(x,t)-\mathbb {E}\left( \widehat{\Psi }_N(x,t)\right) \right| =O_{a.co.}\left( \sqrt{\frac{\log n}{n\varphi _{x}\left( h\right) }}\right) . \end{aligned}$$
(41)

\(\square \)

Proof of Lemma 4.4

We give the proof for the case of an increasing \(\psi (Y-.)\), decreasing case being obtained by considering \(-\psi (Y-.)\). Therefore we can Therefore write, under this consideration, for all \(\kappa > 0\)

$$\begin{aligned} \Psi \left( x,\theta _{x}-\kappa \right) \le \Psi \left( x,\theta _{x}\right) =0\le \Psi \left( x,\theta _{x}+\kappa \right) \end{aligned}$$

The results of Lemmas 4.14.24.3 and 4.1 show that

$$\begin{aligned} \widehat{\Psi }(x,t)\rightarrow \Psi (x,t),\quad \text {a.co. as } \; n\rightarrow \infty . \end{aligned}$$

For all real fixed \(t\in \left[ \theta _{x}-\kappa ,\theta _{x}+\kappa \right] \). So, for sufficiently large n.

$$\begin{aligned} \widehat{\Psi }\left( x,\widehat{\theta }_{x}-\kappa \right) \le 0\le \widehat{\Psi }\left( x,\widehat{\theta }_{x}+\kappa \right) \quad \text { a.co. }. \end{aligned}$$

Since \(\psi \) is a continuous function, then as \(\widehat{\Psi }(x,t)\) is a continuous function of t, there exists a \(\widehat{\theta }_{x}\in \left[ \theta _{x}-\kappa ,\theta _{x}+\kappa \right] \) such that \(\widehat{\Psi }(x,\widehat{\theta }_{x})=0\).

Finally, the uniqueness (in a.co.) of \(\widehat{\theta }_{x}\) is a direct consequence of the strict monotonicity of \(\psi \), while the second part is a direct consequence of the regularity assumption (H4 (i)). \(\square \)

Proof of Lemma 4.5

The same idea in the proof of Lemma 4.2\(\square \)

Proof of Lemma 4.6

As in Lemma 3 of Attouch et al. (2013) using the compactness of \(\left[ \vartheta _{x}-\kappa ,\vartheta _{x}+\kappa \right] \), we can write

$$\begin{aligned} \left[ \vartheta _{x}-\kappa ,\vartheta _{x}+\kappa \right] \subset \bigcup _{j=1}^{d_{n}}\left( y_{j}-l_{n},y_{j}+l_{n}\right) . \end{aligned}$$

We consider the intervals extremities gride

$$\begin{aligned} \mathcal {G}_n=\left\{ y_{j}-l_{n},y_{j}+l_{n},1\le j \le d_n\right\} . \end{aligned}$$

Then the monotony of \(\mathbb {E}\left[ \widehat{R}_N(x,y)\right] \) and \(\widehat{R}_N(x,y)\) gives, for \(1 \le j \le d_n\)

$$\begin{aligned} \mathbb {E}\left[ \widehat{R}_{N}\left( x,y_{j}-l_{n}\right) \right]\le & {} \sup _{y\in \left( y_{j}-l_{n},y_{j}+l_{n}\right) }\mathbb {E}\left[ \widehat{R}_{N}(x,y)\right] \le \mathbb {E}\left[ \widehat{R}_{N}\left( x,y_{j}+l_{n}\right) \right] \nonumber \\ \widehat{R}_{N}\left( x,y_{j}-l_{n}\right)\le & {} \sup _{y\in \left( y_{j}-l_{n},y_{j}+l_{n}\right) }\widehat{R}_{N}(x,y)\le \widehat{R}_{N}\left( x,y_{j}+l_{n}\right) . \end{aligned}$$
(42)

Now, from (E4 (iv)) we have, for any \(y_1,y_2\in \left[ \vartheta _{x}-\kappa ,\vartheta _{x}+\kappa \right] \)

$$\begin{aligned} \left| \mathbb {E}\left[ \widehat{R}_{N}\left( x,y_1\right) \right] -\mathbb {E}\left[ \widehat{R}_{N}\left( x,y_2\right) \right] \right| \le C\left| y_1-y_2\right| ^{b_2}. \end{aligned}$$
(43)

So, we deduce from (42) and (43) that

$$\begin{aligned}{} & {} \sup _{y\in \left[ \vartheta _{x}-\kappa ,\vartheta _{x}+\kappa \right] }\left| \mathbb {E}\left[ \widehat{R}_{N}\left( x,y\right) \right] -\widehat{R}_{N}\left( x,y\right) \right| \nonumber \\{} & {} \qquad \le \max _{1\le j\le d_{n}}\max _{z\in \left\{ y_{j}-l_{n},y_{j}+l_{n}\right\} }\left| \widehat{R}_{N}(x,z)-\mathbb {E}\left[ \widehat{R}_{N}(x,z)\right] \right| +2Cl_{n}^{b_2}\end{aligned}$$
(44)
$$\begin{aligned}{} & {} \qquad \le \max _{z\in \mathcal {G}_n}\left| \widehat{R}_{N}(x,z)-\mathbb {E}\left[ \widehat{R}_{N}(x,z)\right] \right| +O\left( \sqrt{\frac{\log n}{n\varphi _{x}\left( h\right) }}\right) . \end{aligned}$$
(45)

Let \(\Lambda _i=(\delta _{i}K_i(x)\mathbbm {1}_{(-\infty ;z]}(Y_{i})-\mathbb {E}[\delta _{i}K_i(x)\mathbbm {1}_{(-\infty ;z]}(Y_{i})])/\mathbb {E}(K_1(x))\). By using similar arguments for the proof of Lemma 4.1, we deduce that \(\mathbb {E}|\Lambda _i|\le C/\varphi _x(h)\) and \(\mathbb {E}(\Lambda _i^2)\le C^{\prime }/\varphi _x(h)\). By applying again the Bernstein’s exponential inequality, we get

$$\begin{aligned} \max _{z\in \mathcal {G}_n}\left| \mathbb {E}\left[ \widehat{R}_{N}\left( x,z\right) \right] -\widehat{R}_{N}\left( x,z\right) \right| =O_{a.co.}\left( \sqrt{\frac{\log n}{n\varphi _{x}(h)}}\right) . \end{aligned}$$
(46)

which concluded the proof. \(\square \)

Proof of Lemma 2.1

The proof of this lemma is analogous to Lemma A.4 of Boente and Vahnovan (2015).

By Proposition 2.1 and Assumption (E2) we can check that:

$$\begin{aligned} \sup _{y\in [\vartheta _x-\kappa , \vartheta _x+\kappa ]}\left| \widehat{F}(y|X=x)-F(y|X=x)\right| \rightarrow 0. \end{aligned}$$
(47)

Otherwise by (E4) for a fixed \(x\in \mathcal {F}\) there exist a, b such that \(F(b|X=x)>\frac{7}{8}\) and \(F(a|X=x)<\frac{1}{8}\). Let \(m_n(x)\) be the median of \(\widehat{F}(y|X=x)\). Then, (47) implies that there exists \(n_0\in \mathbb {N}\) such that \(\widehat{F}(a|X=x)<\frac{1}{4}\) and \(\widehat{F}(b|X=x)>\frac{3}{4}\) for all \(n \ge n_0\). Hence, we have that \(a< m_n(x) < b\). It is easy to see that for a good choice of a, b and n also, implies that \(\widehat{s}(x)<b-a\) for all \(n \ge n_0\).

For the lower bound, using that \(F(y|X = x)\) is a continuous distribution function in \(x\in \mathcal {F}\), there exist a(x) and b(x) such that

$$\begin{aligned} F\left( a(x)|X=x\right) =\frac{1}{3},\quad F\left( b(x)|X=x\right) =\frac{7}{10}. \end{aligned}$$

Let \(a(x)=a\) and \(b(x)=b\). Assumption (E4 (i)) entails that for any \(\varepsilon < \frac{1}{30}\) there exists \(\eta >0\), such that

$$\begin{aligned} \frac{1}{3}-\varepsilon<F\left( a-\eta |X=x\right)<\frac{1}{3}+\varepsilon ,\quad \frac{7}{10}-\varepsilon<F\left( b+\eta |X=x\right) <\frac{7}{10}+\varepsilon . \end{aligned}$$

Finally, (47) implies that for all \(n \ge n_0\) we have that \(\widehat{F}(a|X=x)<\frac{1}{2}\), \(\widehat{F}(b|X=x)>\frac{1}{2}\), \(\widehat{F}(a-\eta |X=x)>\frac{1}{4}\) and \(\widehat{F}(b+\eta |X=x)<\frac{3}{4}\). Hence, \(a<m_n(x)<b\), and \(\widehat{s}(x)>\eta \) for all \(n \ge n_0\). \(\square \)

Proof

The proof is analogous to the proof of Lemma 4.2. \(\square \)

Proof of Lemma 4.8

\(\forall y\in \left[ \vartheta _{x}-\kappa ,\vartheta _{x}+\kappa \right] , \forall A\le \sigma \le B\) consider a finite covering of \(\left[ \vartheta _{x}-\kappa ,\vartheta _{x}+\kappa \right] \), we have \(\displaystyle \left[ \vartheta _{x}-\kappa ,\vartheta _{x}+\kappa \right] \subset \bigcup \nolimits _{k=1}^{d_{n}}\left( y_{k}-l_{n},y_{k}+l_{n}\right) \). Taking \(k_y=\arg \min _{t\in \{y_{1},\ldots ,y_{d_{n}}\}}|y-t|\). On the other hand, by the same way covering \(\displaystyle [A,B]\subset \bigcup \nolimits _{k=1}^{s_{n}}\left( \sigma _{k}-\nu _{n},\sigma _{k}+\nu _{n}\right) \) and taking \(k_{\sigma }=\arg \min _{s\in \{\sigma _{1},\ldots ,\sigma _{s_{n}}\}}|\sigma -s|\).

With same manner in proof of Lemma 4.3, by taking \(\displaystyle l_n=\nu _n=n^{-\alpha }\) for some \(\alpha >1/2\), we have

$$\begin{aligned} l_n=\nu _{n}=o\left( \sqrt{\frac{\log n}{n\varphi _{x}\left( h\right) }}\right) . \end{aligned}$$
(48)

Note that,

$$\begin{aligned}{} & {} \sup _{y\in \left[ \vartheta _{x}-\kappa ,\vartheta _{x}+\kappa \right] }\sup _{\sigma \in [A,B]}\left| \widehat{\Gamma }_N(x,y,\sigma )-\mathbb {E}\left( \widehat{\Gamma }_N(x,y,\sigma )\right) \right| \\{} & {} \quad \le \underbrace{\sup _{y\in \left[ \vartheta _{x}-\kappa ,\vartheta _{x}+\kappa \right] }\sup _{\sigma \in [A,B]} \left| \widehat{\Gamma }_N(x,y,\sigma )-\widehat{\Gamma }_N(x,k_y,\sigma )\right| }_{F_{1}} \\{} & {} \qquad + \underbrace{\sup _{y\in \left[ \vartheta _{x}-\kappa ,\vartheta _{x}+\kappa \right] }\sup _{\sigma \in [A,B]} \left| \widehat{\Gamma }_N(x,k_y,\sigma )-\widehat{\Gamma }_N(x,k_y,k_{\sigma })\right| }_{F_{2}} \\{} & {} \qquad + \underbrace{\sup _{y\in \left[ \vartheta _{x}-\kappa ,\vartheta _{x}+\kappa \right] }\sup _{\sigma \in [A,B]} \left| \widehat{\Gamma }_N(x,k_y,k_{\sigma })-\mathbb {E}\left( \widehat{\Gamma }_N(x,k_y,k_{\sigma })\right) \right| }_{F_{3}} \\{} & {} \qquad + \underbrace{\sup _{y\in \left[ \vartheta _{x}-\kappa ,\vartheta _{x}+\kappa \right] }\sup _{\sigma \in [A,B]} \left| \mathbb {E}\left( \widehat{\Gamma }_N(x,k_y,k_{\sigma })\right) -\mathbb {E}\left( \widehat{\Gamma }_N(x,k_y,\sigma )\right) \right| }_{F_{4}} \\{} & {} \qquad + \underbrace{\sup _{y\in \left[ \vartheta _{x}-\kappa ,\vartheta _{x}+\kappa \right] }\sup _{\sigma \in [A,B]} \left| \mathbb {E}\left( \widehat{\Gamma }_N(x,k_y,\sigma )\right) -\mathbb {E}\left( \widehat{\Gamma }_N(x,y,\sigma )\right) \right| }_{F_{5}}. \end{aligned}$$

\(\bullet \) Concerning \(F_1\) and \(F_5\), follow the same steps of \(T_1\) and \(T_3\) in Lemma 4.3 by conditions (E3) and (E6), we obtain

$$\begin{aligned}{} & {} \sup _{y\in \left[ \vartheta _{x}-\kappa ,\vartheta _{x}+\kappa \right] }\sup _{\sigma \in [A,B]} \left| \widehat{\Gamma }_N(x,y,\sigma )-\widehat{\Gamma }_N(x,k_y,\sigma )\right| \\{} & {} \quad \le \sup _{y\in \left[ \vartheta _{x}-\kappa ,\vartheta _{x}+\kappa \right] }\sup _{\sigma \in [A,B]}\frac{1}{n\mathbb {E}(K_{1}(x))}\sum _{i=1}^{n}\left| \psi \left( \frac{Y_{i}-y}{\sigma }\right) -\psi \left( \frac{Y_{i}-k_y}{\sigma }\right) \right| \delta _{i}K_{i}(x) \\{} & {} \quad \le \sup _{y\in \left[ \vartheta _{x}-\kappa ,\vartheta _{x}+\kappa \right] }\frac{\Vert \psi ^{\prime }\Vert _{\infty }}{A}\left| y-k_y\right| \left( \frac{1}{n\mathbb {E}(K_{1}(x))}\sum _{i=1}^{n}\delta _{i}K_{i}(x)\right) \\{} & {} \quad \le Cl_{n}. \end{aligned}$$

Now, for n large enough, we can write

$$\begin{aligned}{} & {} \mathbb {P}\left( \sup _{y\in \left[ \vartheta _{x}-\kappa ,\vartheta _{x}+\kappa \right] }\sup _{\sigma \in [A,B]} \left| \widehat{\Gamma }_N(x,y,\sigma )-\widehat{\Gamma }_N(x,k_y,\sigma )\right| >\frac{\eta }{5}\sqrt{\frac{\log n}{n\varphi _{x}\left( h\right) }}\right) \nonumber \\{} & {} \quad =0, \end{aligned}$$
(49)

and

$$\begin{aligned}{} & {} \mathbb {P}\left( \sup _{y\in \left[ \vartheta _{x}-\kappa ,\vartheta _{x}+\kappa \right] }\sup _{\sigma \in [A,B]} \left| \mathbb {E}\left( \widehat{\Gamma }_N(x,k_y,\sigma )\right) -\mathbb {E}\left( \widehat{\Gamma }_N(x,y,\sigma )\right) \right| >\frac{\eta }{5}\sqrt{\frac{\log n}{n\varphi _{x}\left( h\right) }}\right) \nonumber \\{} & {} \quad =0. \end{aligned}$$
(50)

\(\bullet \) Concerning \(F_2\) and \(F_4\), by assumptions (E3) and (E6)(using that \(\zeta (u)=u\psi ^{\prime }(u)\) is bounded), it follows

$$\begin{aligned}{} & {} \sup _{y\in \left[ \vartheta _{x}-\kappa ,\vartheta _{x}+\kappa \right] }\sup _{\sigma \in [A,B]} \left| \widehat{\Gamma }_N(x,k_y,\sigma )-\widehat{\Gamma }_N(x,k_y,k_{\sigma })\right| \\{} & {} \quad \le \sup _{\sigma \in [A,B]}\frac{1}{n\mathbb {E}(K_{1}(x))}\sum _{i=1}^{n}\left| \psi \left( \frac{Y_{i}-k_y}{\sigma }\right) -\psi \left( \frac{Y_{i}-k_y}{k_{\sigma }}\right) \right| \delta _{i}K_{i}(x) \\{} & {} \quad \le \frac{\Vert \zeta \Vert _{\infty }}{A}\nu _n\left( \frac{1}{n\mathbb {E}(K_{1}(x))}\sum _{i=1}^{n}\delta _{i}K_{i}(x)\right) \\{} & {} \quad \le C\nu _{n}. \end{aligned}$$

Thus, for n large enough, we can write

$$\begin{aligned}{} & {} \mathbb {P}\left( \sup _{y\in \left[ \vartheta _{x}-\kappa ,\vartheta _{x}+\kappa \right] }\sup _{\sigma \in [A,B]} \left| \widehat{\Gamma }_N(x,k_y,\sigma )-\widehat{\Gamma }_N(x,k_y,k_{\sigma })\right| >\frac{\eta }{5}\sqrt{\frac{\log n}{n\varphi _{x}\left( h\right) }}\right) \nonumber \\{} & {} \quad =0, \end{aligned}$$
(51)

and

$$\begin{aligned}{} & {} \mathbb {P}\left( \sup _{y\in \left[ \vartheta _{x}-\kappa ,\vartheta _{x}+\kappa \right] }\sup _{\sigma \in [A,B]} \left| \mathbb {E}\left( \widehat{\Gamma }_N(x,k_y,\sigma )\right) -\mathbb {E}\left( \widehat{\Gamma }_N(x,k_y,k_{\sigma })\right) \right| >\frac{\eta }{5}\sqrt{\frac{\log n}{n\varphi _{x}\left( h\right) }}\right) \nonumber \\{} & {} \quad =0. \end{aligned}$$
(52)

\(\bullet \) Concerning \(F_3\): Let

$$\begin{aligned} \displaystyle \Omega _i=\frac{1}{\mathbb {E}\left( K_{1}(x)\right) }\left[ \delta _{i}K_{i}(x)\psi \left( \frac{Y_{i}-k_{y}}{k_{\sigma }}\right) -\mathbb {E}\left( \delta _{i}K_{i}(x) \psi \left( \frac{Y_{i}-k_{y}}{k_{\sigma }} \right) \right) \right] . \end{aligned}$$

Note that K and \(\psi \) are bounded and we have \(\displaystyle \widehat{\Gamma }_{N}\left( x,k_y,k_{\sigma }\right) -\mathbb {E}\left( \widehat{\Gamma }_{N}\left( x,k_y,k_{\sigma }\right) \right) =\frac{1}{n}\sum \nolimits _{i=1}^{n}\Omega _{i}\), we deduce that \(\mathbb {E}|\Omega _i|\le C/\varphi _x(h)\) and \(\mathbb {E}(\Omega _i^2)\le C^{\prime }/\varphi _x(h)\).

We apply now again the Bernstein’s exponential inequality to get

$$\begin{aligned}{} & {} \mathbb {P}\left( F_3>\frac{\eta }{5}\sqrt{\frac{\log n}{n\varphi _{x}(h)}}\right) \\{} & {} \quad = \mathbb {P}\left( \max _{k_{y}\in \left\{ y_{1},\ldots ,y_{d_n}\right\} }\max _{k_{\sigma }\in \left\{ \sigma _{1},\ldots ,\sigma _{s_n}\right\} }\left| \widehat{\Gamma }_{N}\left( x,k_y,k_{\sigma }\right) -\mathbb {E}\left( \widehat{\Gamma }_{N}\left( x,k_y,k_{\sigma }\right) \right) \right|>\frac{\eta }{5}\sqrt{\frac{\log n}{n\varphi _{x}(h)}}\right) \\{} & {} \quad \le d_ns_n\max _{k_{y}\in \left\{ y_{1},\ldots ,y_{d_n}\right\} }\max _{k_{\sigma }\in \left\{ \sigma _{1},\ldots ,\sigma _{s_n}\right\} } \mathbb {P}\left( \frac{1}{n}\left| \sum _{i=1}^{n}\Omega _{i}\right| >\frac{\eta }{5}\sqrt{\frac{\log n}{n\varphi _{x}(h)}}\right) \\{} & {} \quad \le d_ns_n2\exp \left( -C\eta ^{2}\log n\right) . \end{aligned}$$

Because \(l_{n}=\nu _{n}=n^{-\alpha }\) for \(\alpha >1/2\), and by choosing \(\eta \) such that \(C\eta ^2=1/2+3\alpha \), we have

$$\begin{aligned}{} & {} \mathbb {P}\left( \max _{k_{y}\in \left\{ y_{1},\ldots ,y_{d_n}\right\} }\max _{k_{\sigma }\in \left\{ \sigma _{1},\ldots ,\sigma _{s_n}\right\} }\left| \widehat{\Gamma }_{N}\left( x,k_y,k_{\sigma }\right) -\mathbb {E}\left( \widehat{\Gamma }_{N}\left( x,k_y,k_{\sigma }\right) \right) \right| >\frac{\eta }{5}\sqrt{\frac{\log n}{n\varphi _{x}(h)}}\right) \nonumber \\{} & {} \quad \le Cn^{-\alpha -1/2}. \end{aligned}$$
(53)

Now, from (49)–(53), we conclude that

$$\begin{aligned}{} & {} \sup _{y\in \left[ \vartheta _{x}-\kappa ,\vartheta _{x}+\kappa \right] }\sup _{A\le \sigma \le B} \left| \widehat{\Gamma }_N(x,y,\sigma )-\mathbb {E}\left[ \widehat{\Gamma }_N(x,y,\sigma )\right] \right| \nonumber \\{} & {} \qquad =O_{a.co.}\left( \sqrt{\frac{\log n}{n\varphi _{x}(h)}}\right) . \end{aligned}$$
(54)

\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fetitah, O., Attouch, M.K., Khardani, S. et al. Robust nonparametric equivariant regression for functional data with responses missing at random. Metrika 86, 899–929 (2023). https://doi.org/10.1007/s00184-023-00898-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-023-00898-1

Keywords

Navigation